3D intracranial artery segmentation using a convolutional autoencoder

被引:0
|
作者
Chen, Li [1 ]
Xie, Yanjun [2 ]
Sun, Jie [3 ]
Balu, Niranjan [3 ]
Mossa-Basha, Mahmud [3 ]
Pimentel, Kristi [3 ]
Hatsukami, Thomas S. [4 ]
Hwang, Jenq-Neng [1 ]
Yuan, Chun [3 ]
机构
[1] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[3] Univ Washington, Dept Radiol, Seattle, WA 98195 USA
[4] Univ Washington, Dept Surg, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
convolutional autoencoder; deep neural network; machine learning; artery segmentation; Magnetic Resonance Angiography; ASSOCIATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Automated segmentation of intracranial arteries on magnetic resonance angiography (MRA) allows for quantification of cerebrovascular features, which provides tools for understanding aging and pathophysiological adaptations of the cerebrovascular system. Using a convolutional autoencoder (CAE) for segmentation is promising as it takes advantage of the autoencoder structure in effective noise reduction and feature extraction by representing high dimensional information with low dimensional latent variables. In this paper, we trained an 8-layer CAE to learn a 3D segmentation model of intracranial arteries from 49 cases of MRA data. After parameter optimization and prediction refinement, our trained model was shown to perform better than the three traditional segmentation methods in both binary classification and visual evaluation.
引用
收藏
页码:714 / 717
页数:4
相关论文
共 50 条
  • [41] Automated Segmentation of Colorectal Tumor in 3D MRI Using 3D Multiscale Densely Connected Convolutional Neural Network
    Soomro, Mumtaz Hussain
    Coppotelli, Matteo
    Conforto, Silvia
    Schmid, Maurizio
    Giunta, Gaetano
    Del Secco, Lorenzo
    Neri, Emanuele
    Caruso, Damiano
    Rengo, Marco
    Laghi, Andrea
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2019, 2019
  • [42] Carotid Artery Segmentation in 3D Ultrasound Images Using a Hybrid Framework
    Wang, Xiaotong
    Zhang, Yaonan
    [J]. PROCEEDING OF THE IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2012, : 698 - 703
  • [43] Segmentation of 3D MRI Using 2D Convolutional Neural Networks in Infants’ Brain
    Hamed Karimi
    Mohammad Hamghalam
    [J]. Multimedia Tools and Applications, 2024, 83 : 33511 - 33526
  • [44] Segmentation of 3D MRI Using 2D Convolutional Neural Networks in Infants' Brain
    Karimi, Hamed
    Hamghalam, Mohammad
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 33511 - 33526
  • [45] Variational Autoencoder Model Based on 3D Convolutional Neural Network for generative design framework of 3D chair
    Park, T.
    Park, J. Min
    Murdivien, S. A.
    Um, J.
    [J]. INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING AND MANAGEMENT, 2024, 15 (01): : 1 - 17
  • [46] 3D gesture segmentation for word-level Arabic sign language using large-scale RGB video sequences and autoencoder convolutional networks
    Boukdir, Abdelbasset
    Benaddy, Mohamed
    Ellahyani, Ayoub
    El Meslouhi, Othmane
    Kardouchi, Mustapha
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (08) : 2055 - 2062
  • [47] 3D gesture segmentation for word-level Arabic sign language using large-scale RGB video sequences and autoencoder convolutional networks
    Abdelbasset Boukdir
    Mohamed Benaddy
    Ayoub Ellahyani
    Othmane El Meslouhi
    Mustapha Kardouchi
    [J]. Signal, Image and Video Processing, 2022, 16 : 2055 - 2062
  • [48] A Separate 3D Convolutional Neural Network Architecture for 3D Medical Image Semantic Segmentation
    Dong, Shidu
    Liu, Zhi
    Wang, Huaqiu
    Zhang, Yihao
    Cui, Shaoguo
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (08) : 1705 - 1716
  • [49] Learning Unsupervised Visual Representations using 3D Convolutional Autoencoder with Temporal Contrastive Modeling for Video Retrieval
    Kumar, Vidit
    Tripathi, Vikas
    Pant, Bhaskar
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2022, 7 (02) : 272 - 287
  • [50] Dense graph convolutional neural networks on 3D meshes for 3D object segmentation and classification
    Tang, Wenming
    Qiu, Guoping
    [J]. IMAGE AND VISION COMPUTING, 2021, 114