3D intracranial artery segmentation using a convolutional autoencoder

被引:0
|
作者
Chen, Li [1 ]
Xie, Yanjun [2 ]
Sun, Jie [3 ]
Balu, Niranjan [3 ]
Mossa-Basha, Mahmud [3 ]
Pimentel, Kristi [3 ]
Hatsukami, Thomas S. [4 ]
Hwang, Jenq-Neng [1 ]
Yuan, Chun [3 ]
机构
[1] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[3] Univ Washington, Dept Radiol, Seattle, WA 98195 USA
[4] Univ Washington, Dept Surg, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
convolutional autoencoder; deep neural network; machine learning; artery segmentation; Magnetic Resonance Angiography; ASSOCIATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Automated segmentation of intracranial arteries on magnetic resonance angiography (MRA) allows for quantification of cerebrovascular features, which provides tools for understanding aging and pathophysiological adaptations of the cerebrovascular system. Using a convolutional autoencoder (CAE) for segmentation is promising as it takes advantage of the autoencoder structure in effective noise reduction and feature extraction by representing high dimensional information with low dimensional latent variables. In this paper, we trained an 8-layer CAE to learn a 3D segmentation model of intracranial arteries from 49 cases of MRA data. After parameter optimization and prediction refinement, our trained model was shown to perform better than the three traditional segmentation methods in both binary classification and visual evaluation.
引用
收藏
页码:714 / 717
页数:4
相关论文
共 50 条
  • [1] Hepatic artery segmentation with 3D convolutional neural networks
    Kock, Farina
    Chlebus, Grzegorz
    Thielke, Felix
    Schenk, Andrea
    Meine, Hans
    [J]. MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [2] 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization
    Myronenko, Andriy
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 311 - 320
  • [3] Image Segmentation in 3D Brachytherapy Using Convolutional LSTM
    Chang, Jui-Hung
    Lin, Kai-Hsiang
    Wang, Ti-Hao
    Zhou, Yu-Kai
    Chung, Pau-Choo
    [J]. JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2021, 41 (05) : 636 - 651
  • [4] Image Segmentation in 3D Brachytherapy Using Convolutional LSTM
    Jui-Hung Chang
    Kai-Hsiang Lin
    Ti-Hao Wang
    Yu-Kai Zhou
    Pau-Choo Chung
    [J]. Journal of Medical and Biological Engineering, 2021, 41 : 636 - 651
  • [5] 3D object retrieval with stacked local convolutional autoencoder
    Leng, Biao
    Guo, Shuang
    Zhang, Xiangyang
    Xiong, Zhang
    [J]. SIGNAL PROCESSING, 2015, 112 : 119 - 128
  • [6] Segmentation of tomography datasets using 3D convolutional neural networks
    James, Jim
    Pruyne, Nathan
    Stan, Tiberiu
    Schwarting, Marcus
    Yeom, Jiwon
    Hong, Seungbum
    Voorhees, Peter
    Blaiszik, Ben
    Foster, Ian
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2023, 216
  • [7] Deep clustering using 3D attention convolutional autoencoder for hyperspectral image analysis
    Zheng, Ziyou
    Zhang, Shuzhen
    Song, Hailong
    Yan, Qi
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [8] Deep clustering using 3D attention convolutional autoencoder for hyperspectral image analysis
    Ziyou Zheng
    Shuzhen Zhang
    Hailong Song
    Qi Yan
    [J]. Scientific Reports, 14
  • [9] Brain Tumor Segmentation Using 3D Convolutional Neural Network
    Liang, Kaisheng
    Lu, Wenlian
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 199 - 207
  • [10] Multimodal Brain Tumor Segmentation Using 3D Convolutional Networks
    Rodriguez Colmeiro, R. G.
    Verrastro, C. A.
    Grosges, T.
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 226 - 240