γ-positivity and partial γ-positivity of descent-type polynomials

被引:19
|
作者
Ma, Shi-Mei [1 ]
Ma, Jun [2 ]
Yeh, Yeong-Nan [3 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao, Hebei, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai, Peoples R China
[3] Acad Sinica, Inst Math, Taipei, Taiwan
关键词
Eulerian polynomials; Derangement polynomials; Narayana polynomials; Stirling permutations; Legendre-Stirling permutations; Jacobi-Stirling permutations; CONTEXT-FREE GRAMMARS; EULERIAN POLYNOMIALS; STIRLING NUMBERS; PERMUTATIONS; INVOLUTIONS; STATISTICS; PARTITIONS;
D O I
10.1016/j.jcta.2019.05.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study gamma-positivity of descent-type polynomials by introducing the change of context-free grammars method. We first present a unified grammatical proof of the gamma-positivity of Eulerian polynomials, type B Eulerian polynomials, derangement polynomials, Narayana polynomials and type B Narayana polynomials. We then provide partial gamma-positive expansions for several multivariate polynomials associated to Stirling permutations, Legendre-Stirling permutations, Jacobi-Stirling permutations and type B derangements. The recurrence relations for the partial gamma-coefficients of these expansions are also obtained. By using some variants of the Foata-Strehl group action, we provide combinatorial interpretations for the coefficients of most of these partial gamma-positive expansions. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:257 / 293
页数:37
相关论文
共 50 条
  • [1] On the positivity and convexity of polynomials
    Zheng, JJ
    Chen, XQ
    Zhang, JJ
    [J]. CAD/GRAPHICS '2001: PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN AND COMPUTER GRAPHICS, VOLS 1 AND 2, 2001, : 82 - 88
  • [2] POSITIVITY CONDITIONS FOR POLYNOMIALS
    DEANGELIS, V
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1994, 14 : 23 - 51
  • [3] Positivity of trigonometric polynomials
    Megretski, A
    [J]. 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 3814 - 3817
  • [4] On the positivity and convexity of polynomials
    Natl. Cent. for Comp. Animation, Bournemouth Univ., Poole, Dorset BH12 5BB, United Kingdom
    [J]. Ruan Jian Xue Bao/Journal of Software, 2002, 13 (04): : 510 - 517
  • [5] Positivity of Narayana polynomials and Eulerian polynomials
    Ma, Shi-Mei
    Qi, Hao
    Yeh, Jean
    Yeh, Yeong-Nan
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2024, 154
  • [6] NON-GLOBAL POSITIVITY AND DOMAINS OF POSITIVITY OF MULTIVARIABLE POLYNOMIALS
    MODARRESSI, AR
    BOSE, NK
    [J]. PROCEEDINGS OF THE IEEE, 1977, 65 (06) : 936 - 945
  • [7] DECIDING EVENTUAL POSITIVITY OF POLYNOMIALS
    HANDELMAN, D
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1986, 6 : 57 - 79
  • [8] POSITIVITY OF ITERATED SEQUENCES OF POLYNOMIALS
    Zhu, Bao-Xuan
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (03) : 1993 - 2010
  • [9] On the γ -positivity of multiset Eulerian polynomials
    Lin, Zhicong
    Xu, Chao
    Zhao, Tongyuan
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2022, 102
  • [10] POSITIVITY CONDITIONS FOR QUARTIC POLYNOMIALS
    ULRICH, G
    WATSON, LT
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (03): : 528 - 544