DECIDING EVENTUAL POSITIVITY OF POLYNOMIALS

被引:23
|
作者
HANDELMAN, D [1 ]
机构
[1] UNIV OTTAWA,DEPT MATH,OTTAWA K1N 9B4,ONTARIO,CANADA
关键词
D O I
10.1017/S0143385700003291
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:57 / 79
页数:23
相关论文
共 50 条
  • [1] Deciding positivity of multisymmetric polynomials
    Goerlach, Paul
    Riener, Cordian
    Weisser, Tillmann
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2016, 74 : 603 - 616
  • [2] Eventual Positivity of Hermitian Polynomials and Integral Operators
    Tan, Colin
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2016, 37 (01) : 83 - 94
  • [3] Eventual positivity of Hermitian polynomials and integral operators
    Colin Tan
    [J]. Chinese Annals of Mathematics, Series B, 2016, 37 : 83 - 94
  • [5] Eventual positivity for analytic functions
    Handelman, D
    [J]. MATHEMATISCHE ANNALEN, 1996, 304 (02) : 315 - 338
  • [6] Eventual positivity of tridiagonal sign patterns
    Yu, Ber-Lin
    Huang, Ting-Zhu
    Cheng, Hong
    Wang, Dongdong
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (07): : 853 - 859
  • [7] More eventual positivity for analytic functions
    Handelman, D
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2003, 55 (05): : 1019 - 1079
  • [8] A Criterion for the Uniform Eventual Positivity of Operator Semigroups
    Daners, Daniel
    Glueck, Jochen
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2018, 90 (04)
  • [9] Tree sign pattern that permit eventual positivity
    Johnson, Charles
    Waugh, M.
    Zhang, Yulin
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 650 : 162 - 168
  • [10] ON THE EVENTUAL LOCAL POSITIVITY FOR POLYHARMONIC HEAT EQUATIONS
    Ferreira, Lucas C. F.
    Ferreira, Vanderley A., Jr.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (10) : 4329 - 4341