Approximating list-coloring on a fixed surface

被引:0
|
作者
Kawarabayashi, Ken-ichi [1 ]
机构
[1] Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
It is well-known that approximating the chromatic number within a factor of n(1-epsilon) cannot be done in polynomial time for any epsilon > 0; unless coRP = NP. Also, it is known that computing the list-chromatic number is much harder than the chromatic number (assuming that the complexity classes NP and coNP are different). In fact, the problem of deciding if a given graph is f-list-colorable for a function f : V -> {k - 1, k} for k >= 3 is pi(p)(2)-complete.
引用
收藏
页码:333 / 344
页数:12
相关论文
共 50 条
  • [31] Proper conflict-free list-coloring, odd minors, subdivisions, and layered treewidth
    Liu, Chun-Hung
    [J]. DISCRETE MATHEMATICS, 2024, 347 (01)
  • [32] List-coloring of interval graphs with application to register assignment for heterogeneous register-set architectures
    Zeitlhofer, T
    Wess, B
    [J]. SIGNAL PROCESSING, 2003, 83 (07) : 1411 - 1425
  • [33] List-coloring clique-hypergraphs of K5-minor-free graphs strongly
    Liang, Zuosong
    Wu, Jianliang
    Shan, Erfang
    [J]. DISCRETE MATHEMATICS, 2020, 343 (04)
  • [34] Equitable List-Coloring for C5-Free Plane Graphs Without Adjacent Triangles
    Junlei Zhu
    Yuehua Bu
    Xiao Min
    [J]. Graphs and Combinatorics, 2015, 31 : 795 - 804
  • [35] Equitable List-Coloring for C5-Free Plane Graphs Without Adjacent Triangles
    Zhu, Junlei
    Bu, Yuehua
    Min, Xiao
    [J]. GRAPHS AND COMBINATORICS, 2015, 31 (03) : 795 - 804
  • [36] List-Coloring the Squares of Planar Graphs without 4-Cycles and 5-Cycles
    Cranston, Daniel W.
    Jaeger, Bobby
    [J]. JOURNAL OF GRAPH THEORY, 2017, 85 (04) : 721 - 737
  • [37] 2-distance, injective, and exact square list-coloring of planar graphs with maximum degree 4
    La, Hoang
    Storgel, Kenny
    [J]. DISCRETE MATHEMATICS, 2023, 346 (08)
  • [38] Fixed-Parameter Tractability of (n - k) List Coloring
    Banik, Aritra
    Jacob, Ashwin
    Paliwal, Vijay Kumar
    Raman, Venkatesh
    [J]. THEORY OF COMPUTING SYSTEMS, 2020, 64 (07) : 1307 - 1316
  • [39] Fixed-Parameter Tractability of (n - k) List Coloring
    Banik, Aritra
    Jacob, Ashwin
    Paliwal, Vijay Kumar
    Raman, Venkatesh
    [J]. COMBINATORIAL ALGORITHMS, IWOCA 2019, 2019, 11638 : 61 - 69
  • [40] Fixed-Parameter Tractability of (n − k) List Coloring
    Aritra Banik
    Ashwin Jacob
    Vijay Kumar Paliwal
    Venkatesh Raman
    [J]. Theory of Computing Systems, 2020, 64 : 1307 - 1316