Wind Speed Forecasting Using Improved Random Vector Functional Link Network

被引:0
|
作者
Nhabangue, Moreira F. C. [1 ]
Pillai, G. N. [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Elect Engn, Roorkee, Uttar Pradesh, India
关键词
Random Vector Functional Link; Chebyshev Polynomials; Empirical Mode Decomposition; Wind speed prediction; EMPIRICAL MODE DECOMPOSITION; EXTREME LEARNING-MACHINE; REGRESSION; PREDICTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an improved Random Vector Functional Link Network (RVFL) for better performance in regression problems. The model applies the Chebyshev expansion to transform the direct links of the RVFL providing better mapping of nonlinear functions when compared with RVFL model. Two wind speed datasets are used for performance comparison with other models. The application of Chebyshev expansion in the RVFL enables the RVFL to have a lower number of activation nodes reducing its size with better performance. The models are also tested with their ensembled version by applying the empirical mode decomposition (EMD).
引用
下载
收藏
页码:1744 / 1750
页数:7
相关论文
共 50 条
  • [1] Graph ensemble deep random vector functional link network for traffic forecasting
    Du, Liang
    Gao, Ruobin
    Suganthan, Ponnuthurai Nagaratnam
    Wang, David Z.W.
    Applied Soft Computing, 2022, 131
  • [2] Graph ensemble deep random vector functional link network for traffic forecasting
    Du, Liang
    Gao, Ruobin
    Suganthan, Ponnuthurai Nagaratnam
    Wang, David Z. W.
    APPLIED SOFT COMPUTING, 2022, 131
  • [3] Wind power prediction using random vector functional link network with capuchin search algorithm
    Al-qaness, Mohammed A. A.
    Ewees, Ahmed A.
    Fan, Hong
    Abualigah, Laith
    Elsheikh, Ammar H.
    Abd Elaziz, Mohamed
    AIN SHAMS ENGINEERING JOURNAL, 2023, 14 (09)
  • [4] Short-Term Solar Power Forecasting Using Random Vector Functional Link (RVFL) Network
    Aggarwal, Arpit
    Tripathi, M. M.
    AMBIENT COMMUNICATIONS AND COMPUTER SYSTEMS, RACCCS 2017, 2018, 696 : 29 - 39
  • [5] Detecting Wind Power Ramp with Random Vector Functional Link (RVFL) Network
    Ren, Ye
    Qiu, Xueheng
    Suganthan, P. N.
    Srikanth, Narasimalu
    Amaratunga, Gehan
    2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 687 - 694
  • [6] Online dynamic ensemble deep random vector functional link neural network for forecasting
    Gao, Ruobin
    Li, Ruilin
    Hu, Minghui
    Suganthan, P. N.
    Yuen, Kum Fai
    NEURAL NETWORKS, 2023, 166 : 51 - 69
  • [7] Online learning using deep random vector functional link network
    Shiva, Sreenivasan
    Hu, Minghui
    Suganthan, Ponnuthurai Nagaratnam
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 125
  • [8] Recurrent ensemble random vector functional link neural network for financial time series forecasting
    Bhambu, Aryan
    Gao, Ruobin
    Suganthan, Ponnuthurai Nagaratnam
    APPLIED SOFT COMPUTING, 2024, 161
  • [9] Random vector functional link network for short-term electricity load demand forecasting
    Ren, Ye
    Suganthan, P. N.
    Srikanth, N.
    Amaratunga, Gehan
    INFORMATION SCIENCES, 2016, 367 : 1078 - 1093
  • [10] Ship order book forecasting by an ensemble deep parsimonious random vector functional link network
    Cheng, Ruke
    Gao, Ruobin
    Yuen, Kum Fai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133