Ship order book forecasting by an ensemble deep parsimonious random vector functional link network

被引:4
|
作者
Cheng, Ruke [1 ]
Gao, Ruobin [1 ]
Yuen, Kum Fai [1 ]
机构
[1] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore, Singapore
关键词
Forecasting; Shipping market; Deep learning; Machine learning; Random vector functional link; EXTREME LEARNING-MACHINE; SERIES; REGRESSION; MODEL;
D O I
10.1016/j.engappai.2024.108139
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Efficient forecasting of ship order books holds immense significance in the maritime industry, enabling companies to optimize their operations, allocate resources effectively, and make informed decisions. However, volatile characteristics within historical order books pose challenges in achieving reliable, intelligent, and precise forecasts. This paper presents a novel ensemble deep random vector functional link (edRVFL) algorithm to anticipate future ship order book dynamics. The edRVFL leverages deep feature extraction and ensemble learning to enhance forecasting performance. To further elevate its capabilities, we introduce a discontinuous and parsimonious embedding strategy, which deviates from the conventional dense collection of continuous time steps used in vanilla edRVFL. This parsimonious embedding approach limits the model's complexity and boosts its generalization ability. We extensively evaluate the proposed method using ship order book data, and comparative studies demonstrate its superiority over alternative approaches. Our proposed edRVFL offers a promising solution for accurate and efficient ship order book forecasting, making it a valuable asset in the maritime industry's decision -making processes. The source codes utilized in this research are openly available on GitHub at the following link: https://github.com/crkkkaa/Ship-order-book-forecasting-byan-ensemble-deep-parsimonious-random-vector-functional-link-network-.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Graph ensemble deep random vector functional link network for traffic forecasting
    Du, Liang
    Gao, Ruobin
    Suganthan, Ponnuthurai Nagaratnam
    Wang, David Z.W.
    Applied Soft Computing, 2022, 131
  • [2] Graph ensemble deep random vector functional link network for traffic forecasting
    Du, Liang
    Gao, Ruobin
    Suganthan, Ponnuthurai Nagaratnam
    Wang, David Z. W.
    APPLIED SOFT COMPUTING, 2022, 131
  • [3] Online dynamic ensemble deep random vector functional link neural network for forecasting
    Gao, Ruobin
    Li, Ruilin
    Hu, Minghui
    Suganthan, P. N.
    Yuen, Kum Fai
    NEURAL NETWORKS, 2023, 166 : 51 - 69
  • [4] Ensemble Deep Random Vector Functional Link Neural Network for Regression
    Hu, Minghui
    Chion, Jet Herng
    Suganthan, Ponnuthurai Nagaratnam
    Katuwal, Rakesh Kumar
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (05): : 2604 - 2615
  • [5] Parsimonious random vector functional link network for data streams
    Pratama, Mahardhika
    Angelov, Plamen P.
    Lughofer, Edwin
    Er, Meng Joo
    INFORMATION SCIENCES, 2018, 430 : 519 - 537
  • [6] Random vector functional link neural network based ensemble deep learning
    Shi, Qiushi
    Katuwal, Rakesh
    Suganthan, P. N.
    Tanveer, M.
    PATTERN RECOGNITION, 2021, 117
  • [7] Random vector functional link neural network based ensemble deep learning for short-term load forecasting
    Gao, Ruobin
    Du, Liang
    Suganthan, Ponnuthurai Nagaratnam
    Zhou, Qin
    Yuen, Kum Fai
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206
  • [8] An enhanced ensemble deep random vector functional link network for driver fatigue recognition
    Li, Ruilin
    Gao, Ruobin
    Yuan, Liqiang
    Suganthan, P. N.
    Wang, Lipo
    Sourina, Olga
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [9] Recurrent ensemble random vector functional link neural network for financial time series forecasting
    Bhambu, Aryan
    Gao, Ruobin
    Suganthan, Ponnuthurai Nagaratnam
    APPLIED SOFT COMPUTING, 2024, 161
  • [10] Time Series Forecasting Using Online Performance-based Ensemble Deep Random Vector Functional Link Neural Network
    Du, Liang
    Gao, Ruobin
    Suganthan, Ponnuthurai Nagaratnam
    Wang, David Z. W.
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,