Getting the most out of natural variation in C4 photosynthesis

被引:16
|
作者
Covshoff, Sarah [1 ]
Burgess, Steven J. [1 ]
Knerova, Jana
Kuempers, Britta M. C. [1 ]
机构
[1] Univ Cambridge, Dept Plant Sci, Cambridge CB2 3EA, England
基金
英国生物技术与生命科学研究理事会;
关键词
C-4; photosynthesis; Maize; Sorghum; Flaveria; Setaria viridis; Cleome gynandra; NADP-MALIC ENZYME; PHOSPHOENOLPYRUVATE CARBOXYLASE PROMOTER; BUNDLE-SHEATH CELLS; GENE-EXPRESSION; CARBONIC-ANHYDRASE; MAIZE GENOME; FUNCTIONAL-DIFFERENTIATION; QUANTITATIVE PROTEOMICS; FLAVERIA-TRINERVIA; SETARIA-VIRIDIS;
D O I
10.1007/s11120-013-9872-8
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
C-4 photosynthesis is a complex trait that has a high degree of natural variation, involving anatomical and biochemical changes relative to the ancestral C-3 state. It has evolved at least 66 times across a variety of lineages and the evolutionary route from C-3 to C-4 is likely conserved but not necessarily genetically identical. As such, a variety of C-4 species are needed to identify what is fundamental to the C-4 evolutionary process in a global context. In order to identify the genetic components of C-4 form and function, a number of species are used as genetic models. These include Zea mays (maize), Sorghum bicolor (sorghum), Setaria viridis (Setaria), Flaveria bidentis, and Cleome gynandra. Each of these species has different benefits and challenges associated with its use as a model organism. Here, we propose that RNA profiling of a large sampling of C-4, C-3-C-4, and C-3 species, from as many lineages as possible, will allow identification of candidate genes necessary and sufficient to confer C-4 anatomy and/or biochemistry. Furthermore, C-4 model species will play a critical role in the functional characterization of these candidate genes and identification of their regulatory elements, by providing a platform for transformation and through the use of gene expression profiles in mesophyll and bundle sheath cells and along the leaf developmental gradient. Efforts should be made to sequence the genomes of F. bidentis and C. gynandra and to develop congeneric C-3 species as genetic models for comparative studies. In combination, such resources would facilitate discovery of common and unique C-4 regulatory mechanisms across genera.
引用
收藏
页码:157 / 167
页数:11
相关论文
共 50 条
  • [31] C4 PATHWAY PHOTOSYNTHESIS - MITOCHONDRIA AS A SITE FOR C4 ACID DECARBOXYLATION
    KAGAWA, T
    HATCH, MD
    PLANT PHYSIOLOGY, 1974, : 29 - 29
  • [32] What does it take to be C4?: Lessons from the evolution of C4 photosynthesis
    Edwards, GE
    Furbank, RT
    Hatch, MD
    Osmond, CB
    PLANT PHYSIOLOGY, 2001, 125 (01) : 46 - 49
  • [33] Variation in leaf anatomical traits relates to the evolution of C4 photosynthesis in Tribuloideae (Zygophyllaceae)
    Lauterbach, Maximilian
    Zimmer, Regina
    Alexa, Andrea Christine
    Adachi, Shunsuke
    Sage, Rowan
    Sage, Tammy
    MacFarlane, Terry
    Ludwig, Martha
    Kadereit, Gudrun
    PERSPECTIVES IN PLANT ECOLOGY EVOLUTION AND SYSTEMATICS, 2019, 39
  • [34] Setaria viridis: A Model for C4 Photosynthesis
    Brutnell, Thomas P.
    Wang, Lin
    Swartwood, Kerry
    Goldschmidt, Alexander
    Jackson, David
    Zhu, Xin-Guang
    Kellogg, Elizabeth
    Van Eck, Joyce
    PLANT CELL, 2010, 22 (08): : 2537 - 2544
  • [35] OCCURRENCE OF C4 PHOTOSYNTHESIS AMONG PLANTS
    DOWNTON, WJS
    PHOTOSYNTHETICA, 1975, 9 (01) : 96 - 105
  • [36] Russ Monson and the evolution of C4 photosynthesis
    Rowan F. Sage
    Oecologia, 2021, 197 : 823 - 840
  • [37] The early origins of terrestrial C4 photosynthesis
    Tipple, Brett J.
    Pagani, Mark
    ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2007, 35 : 435 - 461
  • [38] CLIMATE CHANGE AND THE EVOLUTION OF C4 PHOTOSYNTHESIS
    EHLERINGER, JR
    SAGE, RF
    FLANAGAN, LB
    PEARCY, RW
    TRENDS IN ECOLOGY & EVOLUTION, 1991, 6 (03) : 95 - 99
  • [39] The Roles of Organic Acids in C4 Photosynthesis
    Ludwig, Martha
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [40] Unicellular C4 photosynthesis in a marine diatom
    Reinfelder, JR
    Kraepiel, AML
    Morel, FMM
    NATURE, 2000, 407 (6807) : 996 - 999