Incorporating Spatial Contiguity into the Design of a Support Vector Machine Classifier

被引:5
|
作者
Dundar, Murat [1 ]
Theiler, James [2 ]
Perkins, Simon [2 ]
机构
[1] Siemens Med Solut Inc, Comp Aided Diag & Therapy, Malvern, PA 19355 USA
[2] Los Alamos Natl Lab, Space & Remote Sensing Sci, Los Alamos, NM 87544 USA
关键词
D O I
10.1109/IGARSS.2006.98
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We describe a modification of the standard support vector machine (SVM) classifier that exploits the tendency for spatially contiguous pixels to be similarly classified. A quadratic term characterizing the spatial correlations in a multispectral image is added into the standard SVM optimization criterion. The mathematical structure of the SVM programming problem is retained, and the solution can be expressed in terms of the ordinary SVM solution with a modified dot product. The spatial correlations are characterized by a "contiguity matrix" Psi whose computation does not require labeled data; thus, the method provides a way to use a mix of labeled and unlabeled data. We present numerical comparisons of classification performance for this contiguity-enhanced SVM against a standard SVM for two multispectral data sets.
引用
收藏
页码:364 / +
页数:2
相关论文
共 50 条
  • [41] Parameter investigation of support vector machine classifier with kernel functions
    Alaa Tharwat
    [J]. Knowledge and Information Systems, 2019, 61 : 1269 - 1302
  • [42] A method for optimizing the combinational kernel of support vector machine classifier
    Yang, Xu
    Yang, Xin
    Xiong, Hui-Lin
    [J]. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2010, 44 (08): : 1037 - 1041
  • [43] Induction machine fault detection using support vector machine based classifier
    Ghate, V.N.
    Dudul, S.V.
    [J]. WSEAS Transactions on Systems, 2009, 8 (05): : 591 - 599
  • [44] Freezing-of-Gait Detection Using Temporal, Spatial, and Physiological Features with a Support-Vector-Machine Classifier
    Tahafchi, Parisa
    Molina, Rene
    Roper, Jaimie A.
    Sowalsky, Kristen
    Hass, Chris J.
    Gunduz, Aysegul
    Okun, Michael S.
    Judy, Jack W.
    [J]. 2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 2867 - 2870
  • [45] Design A Chess Movement Algorithm and Detect the Movement by Images Classification Using Support Vector Machine Classifier
    Ngo Luong Thanh Tra
    Phung Tri Cong
    Nguyen Duy Anh
    [J]. PROCEEDINGS OF 2018 4TH INTERNATIONAL CONFERENCE ON GREEN TECHNOLOGY AND SUSTAINABLE DEVELOPMENT (GTSD), 2018, : 335 - 340
  • [46] Knowledge-based linear support vector machine classifier via vector projection
    Wu, Lu
    Lin, Jie
    [J]. Journal of Computational Information Systems, 2015, 11 (07): : 2559 - 2569
  • [47] Comparison of Support Vector Machine Classifier and Naive Bayes Classifier on Road Surface Type Classification
    Marianingsih, Susi
    Utaminingrum, Fitri
    [J]. PROCEEDINGS OF 2018 3RD INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING AND TECHNOLOGY (SIET 2018), 2018, : 48 - 53
  • [48] Pixel-based Classification Using Support Vector Machine Classifier
    Varma, M. Krishna Satya
    Rao, N. K. K.
    Raju, K. K.
    Varma, G. P. S.
    [J]. 2016 IEEE 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC), 2016, : 51 - 55
  • [49] Adaptive pruning algorithm for least squares support vector machine classifier
    Xiaowei Yang
    Jie Lu
    Guangquan Zhang
    [J]. Soft Computing, 2010, 14 : 667 - 680
  • [50] Statistically-Induced Kernel Function for Support Vector Machine Classifier
    Dendek, Cezary
    Mandziuk, Jacek
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2012, 7267 : 369 - 377