High frequency anodising of aluminium-TiO2 surface composites: Anodising behaviour and optical appearance

被引:13
|
作者
Gudla, Visweswara Chakravarthy [1 ]
Bordo, Kirill [1 ]
Jensen, Flemming [1 ,2 ]
Canulescu, Stela [3 ]
Yuksel, Serkan [1 ]
Simar, Aude [4 ]
Ambat, Rajan [1 ]
机构
[1] Tech Univ Denmark, Dept Mech Engn, DK-800 Lyngby 2, Denmark
[2] Bang & Olufsen A S, Peter Bangs Vej 15, DK-7600 Struer, Denmark
[3] Tech Univ Denmark, Dept Photon Engn, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
[4] Catholic Univ Louvain, IMMC, Pl St Barbe 2, B-1348 Louvain La Neuve, Belgium
来源
关键词
High frequency anodising; Aluminium-TiO2 surface composite; Microstructure; Hardness; Reflectance; TEM; ALLOY; DISSOLUTION; FABRICATION; MORPHOLOGY; COATINGS; BULK; FILM;
D O I
10.1016/j.surfcoat.2015.07.035
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High frequency anodising of Al-TiO2 surface composites using pulse reverse pulse technique was investigated with an aim to understand the effect of the anodising parameters on the optical appearance, microstructure, hardness and growth rate of the anodic layer. Friction stir processing was employed to prepare the Al-TiO2 surface composites, which were anodised in a 20 wt.% sulphuric acid bath at 10 degrees C as a function of pulse frequency, pulse duty cycle, and anodic cycle voltage amplitudes. The optical appearance of the films was characterized and quantified using an integrating sphere-spectrometer setup, which measures the total and diffuse reflectance from the surface. The change in optical reflectance spectra from the anodised layer was correlated to the applied anodising parameters and microstructure of the anodic layer as well as the Al-TiO2 substrate. Change in hardness of the anodised layer was also measured as a function of various anodising parameters. Anodic film growth, hardness, and total reflectance of the surface were found to be highly dependent on the anodising frequency and the anodic cycle potential. Longer exposure times to the anodising electrolyte at lower growth rates resulted in lowering of the reflectance due to TiO2 particle degradation and low hardness due to increased dissolution of the anodised layer during the process. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:67 / 73
页数:7
相关论文
共 32 条