Two-stage multiple kernel learning with multiclass kernel polarization

被引:32
|
作者
Wang, Tinghua [1 ,2 ]
Zhao, Dongyan [2 ]
Feng, Yansong [2 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
[2] Peking Univ, Inst Comp Sci & Technol, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Multiple kernel learning (MKL); Multiclass kernel polarization; Support vector machine (SVM); Multiclass classification; Model selection; CLASSIFICATION; MATRIX;
D O I
10.1016/j.knosys.2013.04.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The success of kernel methods is very much dependent on the choice of kernels. Multiple kernel learning (MKL) aims at learning a combination of different kernels in order to better match the underlying problem instead of using a single fixed kernel. In this paper, we propose a simple but effective multiclass MKL method by a two-stage strategy, in which the first stage finds the kernel weights to combine the kernels, and the second stage trains a standard multiclass support vector machine (SVM). Specifically, we first present an evaluation criterion named multiclass kernel polarization (MKP) to assess the quality of a kernel in the multiclass classification scenario, and then develop a heuristic rule to directly assign a weight to each kernel based on the quality of the individual kernel. MKP is a multiclass extension of the kernel polarization, which is a universal kernel evaluation criterion for kernel design and learning. Comprehensive experiments are conducted on several UCI benchmark examples and the results well demonstrate the effectiveness and efficiency of our approach. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:10 / 16
页数:7
相关论文
共 50 条
  • [41] A pre-selecting base kernel method in multiple kernel learning
    Wu, Peng
    Duan, Fuqing
    Guo, Ping
    NEUROCOMPUTING, 2015, 165 : 46 - 53
  • [42] An efficient multiple kernel learning in reproducing kernel Hilbert spaces (RKHS)
    Xu, Lixiang
    Luo, Bin
    Tang, Yuanyan
    Ma, Xiaohua
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2015, 13 (02)
  • [43] Kernel Spectral Clustering for dynamic data using Multiple Kernel Learning
    Peluffo-Ordonez, D.
    Garcia-Vega, S.
    Langone, R.
    Suykens, J. A. K.
    Castellanos-Dominguez, G.
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [44] EXACT TAIL ASYMPTOTICS FOR A TWO-STAGE QUEUE: COMPLETE SOLUTION VIA KERNEL METHOD
    Dai, Hongshuai
    Kong, Lingtao
    Song, Yang
    RAIRO-OPERATIONS RESEARCH, 2017, 51 (04) : 1211 - 1250
  • [45] Two-stage sparse representation objective tracking algorithm in reproducing kernel Hilbert space
    Zhu H.-F.
    Ding Z.-H.
    Yang Y.-L.
    Feng X.-X.
    Ding D.-W.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (04): : 730 - 740
  • [46] A kernel-based two-stage NU-support vector clustering algorithm
    Yeh, Chi-Yijan
    Lee, Shie-Jue
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 2251 - 2256
  • [47] Large scale multiple kernel learning
    Sonnenburg, Soeren
    Raetsch, Gunnar
    Schaefer, Christin
    Schoelkopf, Bernhard
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1531 - 1565
  • [48] A Unifying View of Multiple Kernel Learning
    Kloft, Marius
    Rueckert, Ulrich
    Bartlett, Peter L.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II: EUROPEAN CONFERENCE, ECML PKDD 2010, 2010, 6322 : 66 - 81
  • [49] Domain Transfer Multiple Kernel Learning
    Duan, Lixin
    Tsang, Ivor W.
    Xu, Dong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (03) : 465 - 479
  • [50] Feature weighted multiple kernel learning
    Wang, Tinghua
    Liu, Fulai
    Yan, Shenhai
    Chen, Junting
    Journal of Computational and Theoretical Nanoscience, 2015, 12 (11) : 4755 - 4760