DUAL-MIXED FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS

被引:30
|
作者
Howell, Jason S. [1 ]
Walkington, Noel J. [2 ]
机构
[1] Coll Charleston, Dept Math, Charleston, SC 29424 USA
[2] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; mixed methods; SUPERCONVERGENT PATCH RECOVERY; NONSINGULAR SOLUTIONS; ELASTICITY ELEMENT; LINEAR ELASTICITY; SYMMETRY; FAMILY; APPROXIMATION; FORMULATION;
D O I
10.1051/m2an/2012050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mixed finite element method for the Navier-Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier-Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf-sup conditions are developed.
引用
收藏
页码:789 / 805
页数:17
相关论文
共 50 条