Numerical analysis of the problems of contact of three elastic bodies by the domain decomposition methods

被引:0
|
作者
Prokopyshyn, I. I. [1 ]
Dyyak, I. I. [2 ]
Martynyak, R. M. [1 ]
机构
[1] Ukrainian Natl Acad Sci, Pidstryhach Inst Appl Problems Mech & Math, Lvov, Ukraine
[2] Franko Lviv Natl Univ, Lvov, Ukraine
关键词
contact of elastic bodies; variational inequalities; penalty method; iterative methods; domain decomposition methods; finite-element method; ALGORITHM;
D O I
10.1007/s11003-013-9581-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the domain decomposition methods for the numerical solution of the problems of frictionless unilateral contact of many elastic bodies of finite sizes. By using the finite-element approximations, we solve the problems of the unilateral contact of three elastic bodies compressed by rigid plates and the contact of three fixed bodies one of which is subjected to the action of an external load. The distributions of normal contact and equivalent stresses in the bodies are analyzed.
引用
收藏
页码:45 / 58
页数:14
相关论文
共 50 条
  • [31] Domain decomposition methods for hyperbolic problems
    Dutt, Pravir
    Lamba, Subir Singh
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (02): : 231 - 249
  • [32] Domain decomposition methods for static problems
    Roux, F.-X.
    Recherche aerospatiale Technical translation, 1990, (01): : 37 - 48
  • [33] DOMAIN DECOMPOSITION METHODS FOR STATIC PROBLEMS
    ROUX, FX
    RECHERCHE AEROSPATIALE, 1990, (01): : 37 - 48
  • [34] Domain decomposition methods for eigenvalue problems
    Lui, SH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 117 (01) : 17 - 34
  • [35] Domain decomposition methods for hyperbolic problems
    Pravir Dutt
    Subir Singh Lamba
    Proceedings - Mathematical Sciences, 2009, 119 : 231 - 249
  • [36] Numerical analysis of two frictionless elastic-piezoelectric contact problems
    Barboteu, M.
    Fernandez, J. R.
    Ouafik, Y.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) : 905 - 917
  • [37] Domain decomposition method for contact problems with small range contact
    Danek, J
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 61 (3-6) : 359 - 373
  • [38] Progress and current situation of numerical analysis methods in contact problems
    Wen, Weidong
    Gao, Deping
    Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics & Astronautics, 1994, 26 (05):
  • [39] Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies. PART I - discretization, limit analysis
    Sysala, S.
    Haslinger, J.
    Hlavacek, I.
    Cermak, M.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (04): : 333 - 353
  • [40] Numerical Analysis of Contact of the Elastic Bodies One of which Has a Discontinuous Thin Coating
    Prokopyshyn, I. I.
    Styahar, A. O.
    MATERIALS SCIENCE, 2022, 57 (05) : 734 - 744