Theorems of unicity for the tridimensional Navier-Stokes system

被引:0
|
作者
Chemin, JY [1 ]
机构
[1] Univ Paris 06, F-75230 Paris 05, France
来源
关键词
D O I
10.1007/BF02791256
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:27 / 50
页数:24
相关论文
共 50 条
  • [1] Extending a class of unicity to the Navier-Stokes equations
    May, Ramzi
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02): : 705 - 718
  • [2] ON A UNICITY THEOREM FOR THE SOLUTION OF THE NAVIER-STOKES EQUATION IN UNLIMITED DOMAINS
    CARBONARO, B
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1984, 29 (07): : 547 - 559
  • [3] Liouville theorems for the Navier-Stokes equations and applications
    Koch, Gabriel
    Nadirashvili, Nikolai
    Seregin, Gregory A.
    Sverak, Vladimir
    ACTA MATHEMATICA, 2009, 203 (01) : 83 - 105
  • [4] Global strong solution of the pressureless Navier-Stokes/Navier-Stokes system
    Zhang, Yue
    Yu, Minyan
    Tang, Houzhi
    ACTA MATHEMATICA SCIENTIA, 2025, 45 (03) : 1045 - 1062
  • [5] Unicity of Navier-Stokes equation solutions in Morrey-Campanato areas
    May, Ramzi
    BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (08): : 817 - 836
  • [6] ON A STABILIZED NAVIER-STOKES SYSTEM
    Varnhorn, W.
    CONFERENCE TOPICAL PROBLEMS OF FLUID MECHANICS 2019: PROCEEDINGS, 2019, : 205 - 214
  • [7] Liouville type theorems for the Euler and the Navier-Stokes equations
    Chae, Dongho
    ADVANCES IN MATHEMATICS, 2011, 228 (05) : 2855 - 2868
  • [8] On the Navier-Stokes equations: Existence theorems and energy equalities
    Zhikov, V. V.
    Pastukhova, S. E.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2012, 278 (01) : 67 - 87
  • [9] Liouville type theorems for stationary Navier-Stokes equations
    Tsai, Tai-Peng
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (01):
  • [10] On the Navier-Stokes equations: Existence theorems and energy equalities
    V. V. Zhikov
    S. E. Pastukhova
    Proceedings of the Steklov Institute of Mathematics, 2012, 278 : 67 - 87