Deep learning-based approach to the characterization and quantification of histopathology in mouse models of colitis

被引:4
|
作者
Kobayashi, Soma [1 ]
Shieh, Jason [2 ]
de Sabando, Ainara Ruiz [3 ]
Kim, Julie [2 ]
Liu, Yang [2 ]
Zee, Sui Y. [4 ]
Prasanna, Prateek [1 ]
Bialkowska, Agnieszka B. [2 ]
Saltz, Joel H. [1 ,4 ]
Yang, Vincent W. [1 ,2 ,5 ]
机构
[1] SUNY Stony Brook, Dept Biomed Informat, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Med, Renaissance Sch Med, Stony Brook, NY 11794 USA
[3] Complejo Hosp Navarra, Dept Med Genet, Pamplona, Navarra, Spain
[4] SUNY Stony Brook, Renaissance Sch Med, Dept Pathol, Stony Brook, NY 11794 USA
[5] SUNY Stony Brook, Dept Physiol & Biophys, Stony Brook, NY 11794 USA
来源
PLOS ONE | 2022年 / 17卷 / 08期
关键词
INFLAMMATORY-BOWEL-DISEASE; SODIUM-INDUCED COLITIS; CROHNS-DISEASE; NEUTRALIZATION; INTEROBSERVER; TNF;
D O I
10.1371/journal.pone.0268954
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inflammatory bowel disease (IBD) is a chronic immune-mediated disease of the gastrointestinal tract. While therapies exist, response can be limited within the patient population. Researchers have thus studied mouse models of colitis to further understand pathogenesis and identify new treatment targets. Flow cytometry and RNA-sequencing can phenotype immune populations with single-cell resolution but provide no spatial context. Spatial context may be particularly important in colitis mouse models, due to the simultaneous presence of colonic regions that are involved or uninvolved with disease. These regions can be identified on hematoxylin and eosin (H&E)-stained colonic tissue slides based on the presence of abnormal or normal histology. However, detection of such regions requires expert interpretation by pathologists. This can be a tedious process that may be difficult to perform consistently across experiments. To this end, we trained a deep learning model to detect 'Involved' and 'Uninvolved' regions from H&E-stained colonic tissue slides. Our model was trained on specimens from controls and three mouse models of colitis-the dextran sodium sulfate (DSS) chemical induction model, the recently established intestinal epithelium-specific, inducible Klf5(Delta IND) (Villin-CreER(T2);Klf5(fl/fl)) genetic model, and one that combines both induction methods. Image patches predicted to be 'Involved' and 'Uninvolved' were extracted across mice to cluster and identify histological classes. We quantified the proportion of 'Uninvolved' patches and 'Involved' patch classes in murine swiss-rolled colons. Furthermore, we trained linear determinant analysis classifiers on these patch proportions to predict mouse model and clinical score bins in a prospectively treated cohort of mice. Such a pipeline has the potential to reveal histological links and improve synergy between various colitis mouse model studies to identify new therapeutic targets and pathophysiological mechanisms.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A DEEP LEARNING-BASED APPROACH TO IDENTIFY PATHOLOGIES IN MOUSE MODELS OF COLITIS
    Kobayashi, Soma
    Shieh, Jason
    de Sabando, Ainara Ruiz
    Prasanna, Prateek
    Bialkowska, Agnieszka B.
    Saltz, Joel H.
    Yang, Vincent W.
    [J]. GASTROENTEROLOGY, 2022, 162 (07) : S840 - S840
  • [2] Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopathology
    Bouteldja, Nassim
    Klinkhammer, Barbara M.
    Buelow, Roman D.
    Droste, Patrick
    Otten, Simon W.
    Freifrau von Stillfried, Saskia
    Moellmann, Julia
    Sheehan, Susan M.
    Korstanje, Ron
    Menzel, Sylvia
    Bankhead, Peter
    Mietsch, Matthias
    Drummer, Charis
    Lehrke, Michael
    Kramann, Rafael
    Floege, Juergen
    Boor, Peter
    Merhof, Dorit
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (01): : 52 - 68
  • [3] A data interpretation approach for deep learning-based prediction models
    Dadsetan, Saba
    Wu, Shandong
    [J]. MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [4] Deep Learning-Based Image Analysis of Liver Steatosis in Mouse Models
    Mairinoja, Laura
    Heikela, Hanna
    Blom, Sami
    Kumar, Darshan
    Knuuttila, Anna
    Boyd, Sonja
    Sjoblom, Nelli
    Birkman, Eva-Maria
    Rinne, Petteri
    Ruusuvuori, Pekka
    Strauss, Leena
    Poutanen, Matti
    [J]. AMERICAN JOURNAL OF PATHOLOGY, 2023, 193 (08): : 1072 - 1080
  • [5] A Novel Deep Learning-Based Mitosis Recognition Approach and Dataset for Uterine Leiomyosarcoma Histopathology
    Zehra, Talat
    Anjum, Sharjeel
    Mahmood, Tahir
    Shams, Mahin
    Sultan, Binish Arif
    Ahmad, Zubair
    Alsubaie, Najah
    Ahmed, Shahzad
    [J]. CANCERS, 2022, 14 (15)
  • [6] A deep learning-based histopathology classifier for Focal Cortical Dysplasia
    Jörg Vorndran
    Christoph Neuner
    Roland Coras
    Lucas Hoffmann
    Simon Geffers
    Jonas Honke
    Jochen Herms
    Sigrun Roeber
    Hajo Hamer
    Sebastian Brandner
    Till Hartlieb
    Tom Pieper
    Manfred Kudernatsch
    Christian G. Bien
    Thilo Kalbhenn
    Matthias Simon
    Homa Adle-Biassette
    Jesús Cienfuegos
    Roberta Di Giacomo
    Rita Garbelli
    Hajime Miyata
    Angelika Mühlebner
    Savo Raicevic
    Tuomas Rauramaa
    Fabio Rogerio
    Ingmar Blümcke
    Samir Jabari
    [J]. Neural Computing and Applications, 2023, 35 : 12775 - 12792
  • [7] A deep learning-based histopathology classifier for focal cortical dysplasia
    Vorndran, J.
    Bluemcke, I.
    Jabari, S.
    [J]. BRAIN PATHOLOGY, 2023, 33
  • [8] Automated Deep Learning-Based Classification of Wilms Tumor Histopathology
    van der Kamp, Ananda
    de Bel, Thomas
    van Alst, Ludo
    Rutgers, Jikke
    van den Heuvel-Eibrink, Marry M.
    Mavinkurve-Groothuis, Annelies M. C.
    van der Laak, Jeroen
    de Krijger, Ronald R.
    [J]. CANCERS, 2023, 15 (09)
  • [9] A deep learning-based histopathology classifier for Focal Cortical Dysplasia
    Vorndran, Jorg
    Neuner, Christoph
    Coras, Roland
    Hoffmann, Lucas
    Geffers, Simon
    Honke, Jonas
    Herms, Jochen
    Roeber, Sigrun
    Hamer, Hajo
    Brandner, Sebastian
    Hartlieb, Till
    Pieper, Tom
    Kudernatsch, Manfred
    Bien, Christian G.
    Kalbhenn, Thilo
    Simon, Matthias
    Adle-Biassette, Homa
    Cienfuegos, Jesus
    Di Giacomo, Roberta
    Garbelli, Rita
    Miyata, Hajime
    Muhlebner, Angelika
    Raicevic, Savo
    Rauramaa, Tuomas
    Rogerio, Fabio
    Bluemcke, Ingmar
    Jabari, Samir
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (17): : 12775 - 12792
  • [10] Melanoma Classification Approach with Deep Learning-Based Feature Extraction Models
    dos Santos, Alan R. F.
    Aires, Kelson R. T.
    das C Filho, I. Francisco
    de Sousa, Leonardo P.
    Veras, Rodrigo de M. S.
    Neto, Laurindo de S. B.
    Neto, Antonio L. de M.
    [J]. 2021 XLVII LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2021), 2021,