Local ensemble transform Kalman filter data assimilation system for the global semi-Lagrangian atmospheric model

被引:4
|
作者
Shlyaeva, A. [1 ,3 ]
Tolstykh, M. [2 ,3 ]
Mizyak, V. [3 ]
Rogutov, V. [3 ]
机构
[1] Bauman Moscow State Tech Univ, Moscow 105005, Russia
[2] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
[3] Hydrometeorol Res Ctr Russia, Moscow 123242, Russia
关键词
ADAPTIVE COVARIANCE INFLATION; SIMPLE PARAMETERIZATION; PART I; PARAMETRIZATION; IMPLEMENTATION; REPRESENTATION; CONVECTION; ALGORITHM; SCHEME; SOIL;
D O I
10.1515/rnam-2013-0023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, ensemble Kalman filters have come into practical data assimilation for numerical weather prediction models. We give an overview of ensemble Kalman filters and problems that arise with practical implementation of ensemble methods. We present our implementation of the local ensemble transform Kalman filter, one of ensemble square root filters using observation localization. Multiplicative and additive inflations are used to prevent filter divergence and to account for the model error. The implemented assimilation system is tested with the global semi-Lagrangian atmospheric model SL-AV using real observations for 2 months of cyclic assimilation (August and September 2012). The system works stably. Application of the ensemble filter significantly reduces first guess (background) errors and corrects the forecast biases.
引用
收藏
页码:419 / 441
页数:23
相关论文
共 50 条
  • [1] A local ensemble transform Kalman filter data assimilation system for the NCEP global model
    Szunyogh, Istvan
    Kostelich, Eric J.
    Gyarmati, Gyorgyi
    Kalnay, Eugenia
    Hunt, Brian R.
    Ott, Edward
    Satterfield, Elizabeth
    Yorke, James A.
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2008, 60 (01) : 113 - 130
  • [2] A local ensemble Kalman filter for atmospheric data assimilation
    Ott, E
    Hunt, BR
    Szunyogh, I
    Zimin, AV
    Kostelich, EJ
    Corazza, M
    Kalnay, E
    Patil, DJ
    Yorke, JA
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2004, 56 (05) : 415 - 428
  • [3] Ensemble Adjustment Kalman Filter Data Assimilation for a Global Atmospheric Model
    Singh, Tarkeshwar
    Mittal, Rashmi
    Upadhyaya, H. C.
    [J]. DYNAMIC DATA-DRIVEN ENVIRONMENTAL SYSTEMS SCIENCE, DYDESS 2014, 2015, 8964 : 284 - 298
  • [4] Lagrangian Data Assimilation of Surface Drifters in a Double-Gyre Ocean Model Using the Local Ensemble Transform Kalman Filter
    Sun, Luyu
    Penny, Stephen G.
    [J]. MONTHLY WEATHER REVIEW, 2019, 147 (12) : 4533 - 4551
  • [5] Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter
    Hunt, Brian R.
    Kostelich, Eri J.
    Szunyogh, Istvan
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) : 112 - 126
  • [6] Weight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter
    Yang, Shu-Chih
    Kalnay, Eugenia
    Hunt, Brian
    Bowler, Neill E.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (638) : 251 - 262
  • [7] Data assimilation using a climatologically augmented local ensemble transform Kalman filter
    Kretschmer, Matthew
    Hunt, Brian R.
    Ott, Edward
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2015, 67 : 1 - 9
  • [8] Applying a Local Ensemble Transform Kalman Filter Assimilation System to the NICAM-SPRINTARS Model
    Dai, Tie
    Schutgens, N. A. J.
    Nakajima, Teruyuki
    [J]. RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2012), 2013, 1531 : 744 - 747
  • [9] A sequential ensemble Kalman filter for atmospheric data assimilation
    Houtekamer, PL
    Mitchell, HL
    [J]. MONTHLY WEATHER REVIEW, 2001, 129 (01) : 123 - 137
  • [10] Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation
    Houtekamer, P. L.
    Zhang, Fuqing
    [J]. MONTHLY WEATHER REVIEW, 2016, 144 (12) : 4489 - 4532