Variable selection in Cox regression models with varying coefficients

被引:14
|
作者
Honda, Toshio [1 ]
Haerdle, Wolfgang Karl [2 ,3 ]
机构
[1] Hitotsubashi Univ, Grad Sch Econ, Kunitachi, Tokyo 1868601, Japan
[2] Humboldt Univ, CASE Ctr Appl Stat & Econ, D-10099 Berlin, Germany
[3] Singapore Management Univ, Lee Kong Chian Sch Business, Singapore 178899, Singapore
关键词
Cox regression model; High-dimensional data; Sparsity; Oracle estimator; B-splines; Group SCAD; Adaptive group Lasso; L-2 convergence rate; NONCONCAVE PENALIZED LIKELIHOOD; LINEAR HAZARD REGRESSION; ADAPTIVE LASSO; SHRINKAGE;
D O I
10.1016/j.jspi.2013.12.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We deal with Cox regression models with varying coefficients. In this paper we concentrate on time-varying coefficient models and just give a brief comment on another kind of varying coefficient model. When we have p-dimensional covariates and p increases with the sample size, it is often the case that only a small part of the covariates are relevant. Therefore we consider variable selection and estimation of the coefficient functions by using the group SCAD-type estimator and the adaptive group Lasso estimator. We examine the theoretical properties of the estimators, especially the L-2 convergence rate, the sparsity, and the oracle property. Simulation studies and a real data analysis show the performance of these procedures. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:67 / 81
页数:15
相关论文
共 50 条
  • [41] Variable selection in Functional Additive Regression Models
    Febrero-Bande, Manuel
    Gonzalez-Manteiga, Wenceslao
    Oviedo de la Fuente, Manuel
    [J]. FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 113 - 122
  • [42] Variable selection in functional regression models: A review
    Aneiros, German
    Novo, Silvia
    Vieu, Philippe
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 188
  • [43] Variable Selection for Semiparametric Isotonic Regression Models
    Du, Jiang
    Zhang, Zhongzhan
    Xie, Tianfa
    [J]. NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 525 - 532
  • [44] Variable selection in finite mixture of regression models
    Khalili, Abbas
    Chen, Jiahua
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (479) : 1025 - 1038
  • [45] Consistent variable selection for functional regression models
    Collazos, Julian A. A.
    Dias, Ronaldo
    Zambom, Adriano Z.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 63 - 71
  • [46] Simultaneous variable selection for heteroscedastic regression models
    Zhang ZhongZhan
    Wang DaRong
    [J]. SCIENCE CHINA-MATHEMATICS, 2011, 54 (03) : 515 - 530
  • [47] VARIABLE SELECTION FOR REGRESSION MODELS WITH MISSING DATA
    Garcia, Ramon I.
    Ibrahim, Joseph G.
    Zhu, Hongtu
    [J]. STATISTICA SINICA, 2010, 20 (01) : 149 - 165
  • [48] Variable selection in functional additive regression models
    Manuel Febrero-Bande
    Wenceslao González-Manteiga
    Manuel Oviedo de la Fuente
    [J]. Computational Statistics, 2019, 34 : 469 - 487
  • [49] ESTIMATING INDIVIDUAL-RESPONSE COEFFICIENTS IN VARYING COEFFICIENTS REGRESSION-MODELS
    KALIRAJAN, KP
    OBWONA, MB
    [J]. JOURNAL OF APPLIED STATISTICS, 1995, 22 (04) : 477 - 484
  • [50] Estimation and inference for functional linear regression models with partially varying regression coefficients
    Cao, Guanqun
    Wang, Shuoyang
    Wang, Lily
    [J]. STAT, 2020, 9 (01):