Graph Eigenvalues Under a Graph Transformation

被引:0
|
作者
Zou, Hua [1 ]
Meng, Jixiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
digraph; eigenvalue; normal matrix;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph X and a digraph D, we define the beta transformation of X and the alpha transformation of D denoted by X-beta and D-alpha respectively. D-alpha is defined as the bipartite graph with vertex set V(D) x {0, 1} and edge set {{(v(i), 0), (v(j), 1)}vertical bar v(i)v(j) is an element of A(D)}. X-beta is defined as the bipartite graph with vertex set V(X) x {0, 1} and edge set {{(v(i), 0), (v(i), 1)}vertical bar v(i)v(j) is an element of A((X) over right arrow)} where (X) over right arrow is the associated digraph of X. In this paper, we give the relation between the eigenvalues of the digraph D and the graph D-alpha when the adjacency matrix of D is normal. Especially, we obtain the eigenvalues of D-alpha when D is some special Cayley digraph.
引用
收藏
页码:15 / 22
页数:8
相关论文
共 50 条
  • [31] BOUNDS FOR LAPLACIAN GRAPH EIGENVALUES
    Maden, A. Dilek
    Buyukkose, Serife
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (03): : 529 - 536
  • [32] Eigenvalues of the matching derangement graph
    Cheng Yeaw Ku
    Kok Bin Wong
    Journal of Algebraic Combinatorics, 2018, 48 : 627 - 646
  • [33] Graph invertibility and median eigenvalues
    Ye, Dong
    Yang, Yujun
    Mandal, Bholanath
    Klein, Douglas J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 513 : 304 - 323
  • [34] A note on the multiplicities of the eigenvalues of a graph
    da Fonseca, CM
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (04): : 303 - 307
  • [35] A Note on Eigenvalues of the Derangement Graph
    Deng, Yun-Ping
    Zhang, Xiao-Dong
    ARS COMBINATORIA, 2011, 101 : 289 - 299
  • [36] Eigenvalues of the matching derangement graph
    Ku, Cheng Yeaw
    Wong, Kok Bin
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2018, 48 (04) : 627 - 646
  • [37] A note on the multiplicities of graph eigenvalues
    Bu, Changjiang
    Zhang, Xu
    Zhou, Jiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 442 : 69 - 74
  • [39] Laplacian eigenvalues and the excess of a graph
    Rodríguez, JA
    Yebra, JLA
    ARS COMBINATORIA, 2002, 64 : 249 - 258
  • [40] On the multiplicity of positive eigenvalues of a graph
    Tian, Fenglei
    Wang, Yiju
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 652 : 105 - 124