Effect of Temperature on Elasticity of Silicon Nanowires

被引:1
|
作者
Wang, Jing [1 ]
机构
[1] Xinjiang Univ, Sch Phys Sci & Technol, Urumqi, Xinjiang, Peoples R China
来源
MEMS/NEMS NANO TECHNOLOGY | 2011年 / 483卷
关键词
Nanowire; Young's modulus; Temperature; YOUNGS MODULUS; DYNAMICS;
D O I
10.4028/www.scientific.net/KEM.483.526
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A semi-continuum approach is developed for mechanical analysis of a silicon nanowire, which captures the atomistic physics and retains the efficiency of continuum models. By using the Keating model, the strain energy of the nanowire required in the semi-continuum approach is obtained. Young's modulus of the silicon (001) nanowire along [100] direction is obtained by the developed semi-continuum approach. Young's modulus decreases dramatically as the size of a silicon nanowire width and thickness scaling down, especially at several nanometers, which is different from its bulk counterpart. The semi-continuum approach is extended to perform a mechanical analysis of the silicon nanowire at finite temperature. Taking into account the variations of the lattice parameter and the bond length with the temperature, the strain energy of the system is computed by using Keating anharmonic model. The dependence of young's modulus of the nanowire on temperature is predicted, and it exhibits a negative temperature coefficient.
引用
收藏
页码:526 / 531
页数:6
相关论文
共 50 条
  • [31] Silicon nanowires prepared by laser ablation at high temperature
    Zhang, YF
    Tang, YH
    Wang, N
    Yu, DP
    Lee, CS
    Bello, I
    Lee, ST
    APPLIED PHYSICS LETTERS, 1998, 72 (15) : 1835 - 1837
  • [32] EFFECT OF TEMPERATURE ON ELASTICITY OF FROG SKIN
    BERGSTROM, R
    ANNALES MEDICINAE EXPERIMENTALIS ET BIOLOGIAE FENNIAE, 1961, 39 (04): : 340 - &
  • [33] Confinement effect on the low temperature specific heat for ultrathin silicon nanowires: a first principles study
    Gonzalez, I
    Calvino, M.
    Trejo, A.
    Salazar, F.
    Cruz-Irisson, M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (42)
  • [34] Water passivation effect on polycrystalline silicon nanowires
    Lin, Horng-Chih
    Su, Chun-Jung
    Hsiao, Cheng-Yun
    Yang, Yuh-Shyong
    Huang, Tiao-Yuan
    APPLIED PHYSICS LETTERS, 2007, 91 (20)
  • [35] Effect of the doping concentration on the properties of silicon nanowires
    Nafie, N.
    Lachiheb, M. Abouda
    Ben Rabha, M.
    Dimassi, W.
    Bouaicha, M.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 56 : 427 - 430
  • [36] Atypical quantum confinement effect in silicon nanowires
    Sorokin, Pavel B.
    Avramov, Pavel V.
    Chernozatonskii, Leonid A.
    Fedorov, Dmitri G.
    Ovchinnikov, Sergey G.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (40): : 9955 - 9964
  • [37] Effect of Dopants on Epitaxial Growth of Silicon Nanowires
    Chung, Sung Hwan
    Ramadurgam, Sarath
    Yang, Chen
    NANOMATERIALS AND NANOTECHNOLOGY, 2014, 4
  • [38] Anomalous Piezoresistance Effect in Ultrastrained Silicon Nanowires
    Lugstein, A.
    Steinmair, M.
    Steiger, A.
    Kosina, H.
    Bertagnolli, E.
    NANO LETTERS, 2010, 10 (08) : 3204 - 3208
  • [39] Giant elasticity of photopolymer nanowires
    Nakanishi, Sana
    Shoji, Satoru
    Kawata, Satoshi
    Sun, Hong-Bo
    APPLIED PHYSICS LETTERS, 2007, 91 (06)
  • [40] Effect of bond population on the elasticity of tungsten nanowires: Ab initio calculation
    Chibisova, M. A.
    Chibisov, A. N.
    Karpovich, N. F.
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 114 : 99 - 101