Probabilistic safety assessment of self-centering steel braced frame

被引:6
|
作者
Rahgozar, Navid [1 ]
Rahgozar, Nima [1 ]
Moghadam, Abdolreza S. [2 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Dept Struct Engn, Tehran, Iran
[2] IIEES, Struct Engn Res Ctr, Tehran, Iran
关键词
self-centering steel braced frame; mean annual frequency; safety assessment; confidence level; margin of safety; PERFORMANCE EVALUATION; SEISMIC PERFORMANCE; SENSITIVITY;
D O I
10.1007/s11709-017-0384-z
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The main drawback of conventional braced frames is implicitly accepting structural damage under the design earthquake load, which leads to considerable economic losses. Controlled rocking self-centering system as a modern low-damage system is capable of minimizing the drawbacks of conventional braced frames. This paper quantifies main limit states and investigates the seismic performance of self-centering braced frame using a Probabilistic Safety Assessment procedure. Margin of safety, confidence level, and mean annual frequency of the self-centering archetypes for their main limit states, including PT yield, fuse fracture, and global collapse, are established and are compared with their acceptance criteria. Considering incorporating aleatory and epistemic uncertainties, the efficiency of the system is examined. Results of the investigation indicate that the design of low-and mid-rise self-centering archetypes could provide the adequate margin of safety against exceeding the undesirable limit-states.
引用
收藏
页码:163 / 182
页数:20
相关论文
共 50 条
  • [21] Seismic performance of steel frame with a self-centering beam
    Shen, Pei-Wen
    Yang, Pu
    Hong, Ji-Hao
    Yang, Yi-Ming
    Tuo, Xiao-Yi
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2020, 175
  • [22] Seismic performance and resilience of composite damping self-centering braced frame structures
    Xu, Longhe
    Xie, Xingsi
    Li, Zhongxian
    FUNDAMENTAL RESEARCH, 2024, 4 (03): : 603 - 610
  • [23] Development and seismic performance improvement of hybrid damping self-centering braced frame
    Lin, Zhichao
    Xu, Longhe
    Xie, Xingsi
    JOURNAL OF BUILDING ENGINEERING, 2022, 52
  • [24] Seismic performance of self-centering braced rocking frame with novel self-centering friction dampers characterized by low-secondary stiffness
    Zhang, Zhenhua
    Zhan, Yunmin
    Shen, Hu
    Qian, Hui
    Sheng, Piao
    STRUCTURES, 2023, 57
  • [25] PERFORMANCE STUDY OF STEEL FRAME SELF-CENTERING BRACED TUBE STRUCTURE UNDER COUPLING ACTION OF EARTHQUAKE AND WIND
    Xu, Long-He
    Liu, Yuan-Yuan
    Xie, Xing-Si
    Gongcheng Lixue/Engineering Mechanics, 2022, 39 (11): : 186 - 195
  • [26] Seismic responses of steel frame structures with self-centering energy dissipation braced on shape memory alloy cables
    Dong, Huihui
    Du, Xiuli
    Han, Qiang
    ADVANCES IN STRUCTURAL ENGINEERING, 2019, 22 (09) : 2136 - 2148
  • [27] Seismic performance and risk assessment of self-centering steel braced frames considering failure of prestressed tendons
    Ping Y.
    Fang C.
    Chen Y.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2022, 43 (07): : 1 - 10and20
  • [28] Study on seismic performance of prefabricated self-centering steel frame
    Yun, Chen
    Chao, Chen
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2021, 182
  • [29] Seismic Behavior and Design Approach of Variable-Damping Self-Centering Braced Frame
    Xu, Longhe
    Xie, Xingsi
    Li, Zhongxian
    JOURNAL OF STRUCTURAL ENGINEERING, 2021, 147 (06)
  • [30] Computational study of self-centering buckling-restrained braced frame seismic performance
    Eatherton, Matthew R.
    Fahnestock, Larry A.
    Miller, David J.
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2014, 43 (13): : 1897 - 1914