Effect of the preparation route, PEG and annealing on the phase stability of Fe3O4 nanoparticles and their magnetic properties

被引:6
|
作者
Rashdan, S. [1 ]
Bououdina, M. [2 ,3 ]
Al-Saie, A. [2 ,3 ]
机构
[1] Univ Bahrain, Coll Sci, Dept Chem, Isa Town, Bahrain
[2] Univ Bahrain, Coll Sci, Dept Phys, Isa Town, Bahrain
[3] Univ Bahrain, Nanotechnol Ctr, Isa Town, Bahrain
关键词
nanoparticles; X-ray diffraction; transmission electron microscopy; magnetic properties; NANOSTRUCTURES;
D O I
10.1080/17458080.2011.566632
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fe3O4 nanoparticles are synthesised via two different methods: (1) co-precipitation of Fe2+ and Fe3+ ions and (2) oxidative alkaline hydrolysis of Fe2+ ions under atmospheric pressure using different protective agents (PEG 200 and PEG 3000) and urea as a base. The preparation method and the polyethylene glycol (PEG) used are concurrently affecting the phase stability of the formation of the iron oxides: the co-precipitation method using PEG 200 (E4a) or PEG 3000 (E4b) leads to the formation of different ratios of Fe2O3 and Fe3O4, whereas the oxidative hydrolysis of Fe2+ using PEG 200 gives Fe3O4 (E2) powder as a major product. The average crystallites size of E4a and E4b is almost identical, i.e. around 19?nm but the saturation magnetisation of E4b is three times larger than that of E4a. The sample E2 shows the highest saturation magnetisation value 74?emu/g, with an average crystallites size of 71?nm. Transmission electron microscopy analysis confirmed that the E2 sample shows the presence of needles crystals with typical sizes around 10 and 50?nm and its selected area diffraction (SAD) shows a typical diffraction of the spinel structure of magnetite. On the other hand, E4b sample shows elongated nanoparticles with typical sizes around 24?nm and its SAD confirmed the presence of a mixture of Fe2O3 and Fe3O4 as many dispersed spots were obtained.
引用
收藏
页码:210 / 222
页数:13
相关论文
共 50 条
  • [41] Synthesis and Magnetic Properties of PEG-Modified Fe3O4 Nanospheres
    Peng Qingwu
    Wang Shufen
    Chen Guorong
    RARE METAL MATERIALS AND ENGINEERING, 2012, 41 : 493 - 496
  • [42] ζ potential and stability of Fe3O4 nanoparticles
    Wuhan Ligong Daxue Xuebao/Journal of Wuhan University of Technology, 2003, 25 (05):
  • [43] TEA controllable preparation of magnetite nanoparticles (Fe3O4 NPs) with excellent magnetic properties
    Han, Chengliang
    Zhu, Dejie
    Wu, Hanzhao
    Li, Yao
    Cheng, Lu
    Hu, Kunhong
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 408 : 213 - 216
  • [44] Evaluation of Magnetic Hyperthermia Efficiency of PEG-Coated Fe3O4 Nanoparticles
    Srivastava, Neha
    Baranwal, Manoj
    Chudasama, Bhupendra
    NANO, 2023, 18 (12)
  • [45] Effect of Carbon Shell on the Structural and Magnetic Properties of Fe3O4 Superparamagnetic Nanoparticles
    A. Jafari
    K. Boustani
    S. Farjami Shayesteh
    Journal of Superconductivity and Novel Magnetism, 2014, 27 : 187 - 194
  • [46] Effect of Citrate on the Size and the Magnetic Properties of Primary Fe3O4 Nanoparticles and Their Aggregates
    Atrei, Andrea
    Mahdizadeh, Fariba Fahmideh
    Baratto, Maria Camilla
    Scala, Andrea
    APPLIED SCIENCES-BASEL, 2021, 11 (15):
  • [47] Effect of surfactant coating on magnetic properties of Fe3O4 nanoparticles: ESR study
    Koseoglu, Yuksel
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 300 (01) : E327 - E330
  • [48] Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles
    Larumbe, S.
    Gomez-Polo, C.
    Perez-Landazabal, J. I.
    Pastor, J. M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (26)
  • [49] Effect of Carbon Shell on the Structural and Magnetic Properties of Fe3O4 Superparamagnetic Nanoparticles
    Jafari, A.
    Boustani, K.
    Shayesteh, S. Farjami
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2014, 27 (01) : 187 - 194
  • [50] Facilely preparation and microwave absorption properties of Fe3O4 nanoparticles
    Wang, Guiqin
    Chang, Yongfeng
    Wang, Lifang
    Liu, Lidong
    Liu, Chao
    MATERIALS RESEARCH BULLETIN, 2013, 48 (03) : 1007 - 1012