Richtmyer-Meshkov instability in elastic-plastic media

被引:95
|
作者
Piriz, A. R. [1 ,2 ]
Lopez Cela, J. J. [1 ,2 ]
Tahir, N. A. [3 ]
Hoffmann, D. H. H. [4 ]
机构
[1] Univ Castilla La Mancha, ETSI Ind, E-13071 Ciudad Real, Spain
[2] Inst Invest Energet, Ciudad Real 13071, Spain
[3] Gesell Schwerionenforsch mbH, D-64291 Darmstadt, Germany
[4] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 05期
关键词
D O I
10.1103/PhysRevE.78.056401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An analytical model for the linear Richtmyer-Meshkov instability in solids under conditions of high-energy density is presented, in order to describe the evolution of small perturbations at the solid-vacuum interface. The model shows that plasticity determines the maximum perturbation amplitude and provides simple scaling laws for it as well as for the time when it is reached. After the maximum amplitude is reached, the interface remains oscillating with a period that is determined by the elastic shear modulus. Extensive two-dimensional simulations are presented that show excellent agreement with the analytical model. The results suggest the possibility to experimentally evaluate the yield strength of solids under dynamic conditions by using a Richtmyer-Meshkov-instability-based technique.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Numerical simulation of Richtmyer-Meshkov instability
    Fu, DX
    Ma, YW
    Zhang, LB
    Tian, BL
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (Suppl 1): : 234 - 244
  • [32] The impact of compressibility in Richtmyer-Meshkov instability
    Fu, Zebang
    Wang, Chuanxing
    Lin, Zihan
    Zhu, Guohuai
    Wang, Kai
    Luo, Hui
    PHYSICS OF PLASMAS, 2025, 32 (02)
  • [33] The bipolar behavior of the Richtmyer-Meshkov instability
    Gowardhan, Akshay A.
    Ristorcelli, J. Ray
    Grinstein, Fernando F.
    PHYSICS OF FLUIDS, 2011, 23 (07)
  • [34] Richtmyer-Meshkov flow in elastic solids
    Piriz, A. R.
    Cela, J. J. Lopez
    Tahir, N. A.
    Hoffmann, D. H. H.
    PHYSICAL REVIEW E, 2006, 74 (03)
  • [35] The Effect of Liquid Tamping Media on the Growth of Richtmyer-Meshkov Instability in Copper
    Olles, J. D.
    Hudspeth, M. C.
    Tilger, C. F.
    Vogler, T. J.
    JOURNAL OF DYNAMIC BEHAVIOR OF MATERIALS, 2021, 7 (02) : 338 - 351
  • [36] Effects of adiabatic exponent on Richtmyer-Meshkov instability
    Tian, BL
    Fu, DX
    Ma, YW
    CHINESE PHYSICS LETTERS, 2004, 21 (09) : 1770 - 1772
  • [37] SMALL AMPLITUDE THEORY OF RICHTMYER-MESHKOV INSTABILITY
    YANG, YM
    ZHANG, QA
    SHARP, DH
    PHYSICS OF FLUIDS, 1994, 6 (05) : 1856 - 1873
  • [38] The transverse field Richtmyer-Meshkov instability in magnetohydrodynamics
    Wheatley, V.
    Samtaney, R.
    Pullin, D. I.
    Gehre, R. M.
    PHYSICS OF FLUIDS, 2014, 26 (01)
  • [39] Nonlinear behaviour of convergent Richtmyer-Meshkov instability
    Luo, Xisheng
    Li, Ming
    Ding, Juchun
    Zhai, Zhigang
    Si, Ting
    JOURNAL OF FLUID MECHANICS, 2019, 877 : 130 - 141
  • [40] Spherical Richtmyer-Meshkov instability for axisymmetric flow
    Dutta, S
    Glimm, J
    Grove, JW
    Sharp, DH
    Zhang, YM
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2004, 65 (4-5) : 417 - 430