Continuum percolation for Gibbs point processes

被引:9
|
作者
Stucki, Kaspar [1 ]
机构
[1] Univ Gottingen, Gottingen, Germany
关键词
Gibbs point process; Percolation; Boolean model; Conditional intensity;
D O I
10.1214/ECP.v18-2837
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider percolation properties of the Boolean model generated by a Gibbs point process and balls with deterministic radius. We show that for a large class of Gibbs point processes there exists a critical activity, such that percolation occurs a.s. above criticality.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [41] Disagreement percolation for Gibbs ball models
    Hofer-Temmel, Christoph
    Houdebert, Pierre
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (10) : 3922 - 3940
  • [42] LONG-RANGE PERCOLATION IN STATIONARY POINT-PROCESSES
    BURTON, RM
    MEESTER, RWJ
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1993, 4 (02) : 177 - 190
  • [43] THE CONTINUUM POTTS-MODEL AND CONTINUUM PERCOLATION
    GIVEN, JA
    STELL, G
    [J]. PHYSICA A, 1989, 161 (01): : 152 - 180
  • [44] Statistics for non-sparse spatially homogeneous Gibbs point processes
    Döge, G
    Stoyan, D
    [J]. MORPHOLOGY OF CONDENSED MATTER: PHYSICS AND GEOMETRY OF SPATIALLY COMPLEX SYSTEMS, 2002, 600 : 418 - 427
  • [45] Takacs-Fiksel Method for Stationary Marked Gibbs Point Processes
    Coeurjolly, Jean-Francois
    Dereudre, David
    Drouilhet, Remy
    Lavancier, Frederic
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2012, 39 (03) : 416 - 443
  • [46] Packing Densities and Simulated Tempering for Hard Core Gibbs Point Processes
    S. Mase
    J. Møller
    D. Stoyan
    R. P. Waagepetersen
    G. Döge
    [J]. Annals of the Institute of Statistical Mathematics, 2001, 53 : 661 - 680
  • [47] Bayesian smoothing in the estimation of the pair potential function of Gibbs point processes
    Heikkinen, J
    Penttinen, A
    [J]. BERNOULLI, 1999, 5 (06) : 1119 - 1136
  • [48] Packing densities and simulated tempering for hard core Gibbs point processes
    Mase, S
    Moller, J
    Stoyan, D
    Waagepetersen, RP
    Döge, G
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2001, 53 (04) : 661 - 680
  • [49] A Comparative Study of Approximate Bayesian Computation Methods for Gibbs Point Processes
    Chen, Jiaxun
    Micheas, Athanasios C.
    Holan, Scott H.
    [J]. STATISTICS AND APPLICATIONS, 2020, 18 (02): : 223 - 248
  • [50] An estimation method of the pair potential function for Gibbs point processes on spheres
    Billiot, JM
    Goulard, M
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (01) : 185 - 203