Scaling of level statistics and critical exponent of disordered two-dimensional symplectic systems

被引:27
|
作者
Schweitzer, L [1 ]
Zharekeshev, IK [1 ]
机构
[1] UNIV HAMBURG,INST THEORET PHYS,D-20355 HAMBURG,GERMANY
关键词
D O I
10.1088/0953-8984/9/33/001
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The statistics of the energy eigenvalues at the metal-insulator transition of a two-dimensional disordered system with spin-orbit interaction is investigated numerically. The critical exponent nu is obtained from the finite-size scaling of the number J(0) which is related to the probability Q(n)(s) of having n energy levels within an interval of width s. In contrast to previous estimates, we find nu = 2.32 +/- 0.14 close to the value of the two-dimensional quantum Hall system.
引用
收藏
页码:L441 / L445
页数:5
相关论文
共 50 条
  • [21] CRITICAL-EXPONENT MEASUREMENTS OF A TWO-DIMENSIONAL SUPERCONDUCTOR
    HEBARD, AF
    FIORY, AT
    PHYSICAL REVIEW LETTERS, 1983, 50 (20) : 1603 - 1606
  • [22] Some mathematical aspects of the scaling limit of critical two-dimensional systems
    Werner, W
    PRAMANA-JOURNAL OF PHYSICS, 2005, 64 (05): : 757 - 773
  • [23] Some mathematical aspects of the scaling limit of critical two-dimensional systems
    Wendelin Werner
    Pramana, 2005, 64 : 757 - 773
  • [24] Hilbert statistics of vorticity scaling in two-dimensional turbulence
    Tan, H. S.
    Huang, Y. X.
    Meng, Jianping
    PHYSICS OF FLUIDS, 2014, 26 (01)
  • [25] Two-dimensional disordered Ising model within nonextensive statistics
    Borodikhin, V. N.
    PHYSICS OF METALS AND METALLOGRAPHY, 2017, 118 (06): : 524 - 527
  • [26] Two-dimensional disordered Ising model within nonextensive statistics
    V. N. Borodikhin
    Physics of Metals and Metallography, 2017, 118 : 524 - 527
  • [27] DYNAMIC CRITICAL EXPONENT Z IN SOME TWO-DIMENSIONAL MODELS
    MAZENKO, GF
    VALLS, OT
    PHYSICAL REVIEW B, 1981, 24 (03): : 1419 - 1428
  • [28] Anderson localization in two-dimensional disordered systems
    Unge, M
    Stafström, S
    SYNTHETIC METALS, 2003, 139 (02) : 239 - 244
  • [29] Conformal algebras of two-dimensional disordered systems
    Gurarie, V
    Ludwig, AWW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (27): : L377 - L384
  • [30] Phase transitions in two-dimensional disordered systems
    Fendley, P
    Konik, RM
    PHYSICAL REVIEW B, 2000, 62 (14): : 9359 - 9363