Design of a 65 nm CMOS 8 GHz wideband: track-and-hold, for radio astronomy and cosmology applications

被引:0
|
作者
Mattos, D. [1 ,2 ]
Hellmuth, P. [3 ]
Recoquillon, C. [2 ]
Gauffre, S. [2 ]
Cais, P. [2 ]
Pedroza, J. -L. [3 ]
Begueret, J. -B. [1 ]
Baudry, A. [2 ,4 ]
机构
[1] Univ Bordeaux, IMS Lab, Talence, France
[2] Univ Bordeaux, CNRS, UMR 5804, LAB OASU, Floirac, France
[3] Univ Bordeaux, CNRS, CENBG, UMR 5797, Gradignan, France
[4] ESO, European ALMA Project Off, Garching, Germany
关键词
Track-and-hold; ADC; Wideband operation; CMOS; AMPLIFIER;
D O I
10.1007/s10470-012-9915-7
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In modern millimeter and sub-millimeter communication systems, particle physics, neutrino astronomy, and for passive applications in radio astronomy or remote atmospheric sensing, the trend is to eliminate analog functional blocks, such as mixers and filters, by converting the signal into the digital domain as early as possible in the processing chain. Therefore, fast analog-to-digital converters (ADC) are needed. Track-and-hold (TAH) circuits can reduce time constraints by holding the analog input value while comparators are sampled, in order to minimize the aperture time errors. This article describes the design of a TAH using the 65 nm CMOS technology from STMicroelectronics. A fully differential architecture has been adopted. The circuit exhibits a -3 dB input bandwidth wider than 8 GHz. At 8 GHz, the maximum sampling frequency, the measured overall power consumption and gain are 178 mW and -2 dB, respectively. The TAH core dissipates around 40 mW. The measured total harmonic distortion (THD) at Nyquist sampling conditions is about -37 dB. The circuit die area is 1.1 mmA(2).
引用
收藏
页码:779 / 787
页数:9
相关论文
共 50 条
  • [11] A 12 GB/s 3-GHz Input Bandwidth Track-and-hold Amplifier in 65 nm CMOS with 48-dB Spur-free Dynamic Range
    Liu, Yu-Cheng
    Chang, Hong-Yeh
    Chen, Kevin
    2014 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2014,
  • [12] ESD Protection Design for Wideband RF Applications in 65-nm CMOS Process
    Chu, Li-Wei
    Lin, Chun-Yu
    Ker, Ming-Dou
    Song, Ming-Hsiang
    Tseng, Jen-Chou
    Jou, Chewn-Pu
    Tsai, Ming-Hsien
    2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2014, : 1480 - 1483
  • [13] Design of A Wideband Low Power FMCW Synthesizer in 65 nm CMOS for Radar Applications
    Liu, Supeng
    Zheng, Yuanjin
    He, Xiaofeng
    2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2014, : 1776 - 1779
  • [14] A Wideband Programmable-Gain Amplifier for 60GHz Applications in 65nm CMOS
    Hsieh, Yi-Keng
    Hsieh, Hsieh-Hung
    Lu, Liang-Hung
    2013 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION, AND TEST (VLSI-DAT), 2013,
  • [15] 14.6-22.2 GHz LC-VCO in 65 nm CMOS technology for wideband applications
    Lu, J.
    Wang, N. -Y.
    Chang, M. -C. F.
    ELECTRONICS LETTERS, 2011, 47 (06) : 385 - U49
  • [16] A Wideband Programmable-Gain Amplifier for 60GHz Applications in 65nm CMOS
    Hsieh, Yi-Keng
    Hsieh, Hsieh-Hung
    Lu, Liang-Hung
    2013 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION, AND TEST (VLSI-DAT), 2013,
  • [17] A 240 GHz Fully Integrated Wideband QPSK Transmitter in 65 nm CMOS
    Kang, Shinwon
    Thyagarajan, Siva V.
    Niknejad, Ali M.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (10) : 2256 - 2267
  • [18] A 240GHz Wideband QPSK Transmitter in 65nm CMOS
    Kang, Shinwon
    Thyagarajan, Siva V.
    Niknejad, Ali M.
    2014 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM, 2014, : 353 - 356
  • [19] A 204-234.5-GHz Wideband Amplifier in 65-nm CMOS
    Qi, Hao
    Wen, Jincai
    An, Donggang
    Wang, Xun
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2019, : 3000 - 3004
  • [20] A 240 GHz Fully Integrated Wideband QPSK Receiver in 65 nm CMOS
    Thyagarajan, Siva V.
    Kang, Shinwon
    Niknejad, Ali M.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (10) : 2268 - 2280