GLOBAL CONTEXT INFERENCE FOR ADAPTIVE ABNORMALITY DETECTION IN PET-CT IMAGES

被引:0
|
作者
Song, Yang [1 ]
Cai, Weidong [1 ]
Feng, David Dagan [1 ]
机构
[1] Univ Sydney, Sch Informat Technol, Biomed & Multimedia Informat Technol BMIT Res Grp, Sydney, NSW 2006, Australia
关键词
PET-CT; abnormality; global contexts; max-margin; detection; TUMOR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
PET-CT is now accepted as the best imaging technique for non-invasive staging of lung cancers, and a computer-based abnormality detection is potentially useful to assist the reading physicians in diagnosis. In this paper, we present a new fully-automatic approach to detect abnormalities in the thorax based on global context inference. A max-margin learning-based method is designed to infer the global contexts, which together with local features are then classified to produce the detection results adaptively. The proposed method is evaluated on clinical PET-CT images from NSCLC studies, and high detection precision and recall are demonstrated.
引用
收藏
页码:482 / 485
页数:4
相关论文
共 50 条
  • [31] Joint segmentation of anatomical and functional images: Applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images
    Bagci, Ulas
    Udupa, Jayaram K.
    Mendhiratta, Neil
    Foster, Brent
    Xu, Ziyue
    Yao, Jianhua
    Chen, Xinjian
    Mollura, Daniel J.
    [J]. MEDICAL IMAGE ANALYSIS, 2013, 17 (08) : 929 - 945
  • [32] Modeling and Simulation of 4D PET-CT and PET-MR Images
    Tsoumpas, Charalampos
    Gaitanis, Anastasios
    [J]. PET CLINICS, 2013, 8 (01) : 95 - +
  • [33] Comparison of PET images obtained in the PET-CT scanner and gamma camera with the function of the coincidence
    Wyszomirska, A.
    Cichocka, S.
    Wypychowska, K.
    Sobota, T.
    Budzynska, A.
    Dziegielewski, M.
    Czepczynski, R.
    Sowinski, J.
    Ruchala, M.
    Dziuk, M.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2012, 39 : S516 - S517
  • [34] The role of PET-CT images in radiotherapy treatment planning for lung cancer
    Fleming, L
    Hounsell, A
    Cosgrove, V
    Carson, K
    Zatari, A
    Eakin, R
    Stewart, D
    Clarke, J
    Jarritt, P
    [J]. RADIOTHERAPY AND ONCOLOGY, 2005, 76 : S52 - S53
  • [35] PROBABILITY RANDOM INDEX BASED CLUSTERING FOR SEGMENTATION OF PET-CT IMAGES
    Guruprasad, S.
    Kurian, M. Z.
    Suma, H. N.
    [J]. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2019, 31 (02):
  • [36] Similarity-based thoracic subvolume localization on PET-CT images
    Song, Yang
    Cai, Weidong
    Feng, David Dagan
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2012, 53
  • [37] Multi-resolution elastic registration of PET-CT images.
    Carlsen, IC
    Wischmann, HA
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2003, 44 (05) : 60P - 60P
  • [38] Topology polymorphism graph for lung tumor segmentation in PET-CT images
    Cui, Hui
    Wang, Xiuying
    Zhou, Jianlong
    Eberl, Stefan
    Yin, Yong
    Feng, Dagan
    Fulham, Michael
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (12): : 4893 - 4914
  • [39] Extraskeletal osteosarcoma: Extensive tumor thrombus on fused PET-CT images
    Ukihide Tateishi
    Tetsuo Maeda
    Yasuaki Arai
    Umio Yamaguchi
    Takashi Terauchi
    Noriyuki Moriyama
    Tadashi Hasegawa
    [J]. Annals of Nuclear Medicine, 2005, 19 : 729 - 732
  • [40] Implementation of PET-CT images for target volume definition in radiotherapy planning
    Khan, S
    Reiner, S
    Dizendorf, E
    Baumert, B
    Davis, JB
    [J]. STRAHLENTHERAPIE UND ONKOLOGIE, 2002, 178 : 130 - 130