Geometry and analysis of Dirichlet forms

被引:33
|
作者
Koskela, Pekka [2 ]
Zhou, Yuan [1 ,2 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Math, Beijing 100191, Peoples R China
[2] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院; 中国国家自然科学基金;
关键词
Dirichlet form; Intrinsic distance; Length structure; Differential structure; Sierpinski gasket; Gradient flow; Ricci curvature; Poincare inequality; Metric measure space; METRIC-MEASURE-SPACES; SOBOLEV SPACES; HEAT KERNEL; POINCARE INEQUALITIES; GRADIENT FLOWS; LENGTH SPACES; CURVATURE; ASYMPTOTICS; EQUATIONS; BEHAVIOR;
D O I
10.1016/j.aim.2012.08.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a regular, strongly local Dirichlet form on L-2(X, m) and d the associated intrinsic distance. Assume that the topology induced by d coincides with the original topology on X, and that X is compact, satisfies a doubling property and supports a weak (1, 2)-Poincare inequality. We first discuss the (non-) coincidence of the intrinsic length structure and the gradient structure. Under the further assumption that the Ricci curvature of X is bounded from below in the sense of Lott-Sturm-Villani, the following are shown to be equivalent: (i) the heat flow of E gives the unique gradient flow of U-infinity, (ii) E satisfies the Newtonian property, (iii) the intrinsic length structure coincides with the gradient structure. Moreover, for the standard (resistance) Dirichlet form on the Sierpinski gasket equipped with the Kusuoka measure, we identify the intrinsic length structure with the measurable Riemannian and the gradient structures. We also apply the above results to the (coarse) Ricci curvatures and asymptotics of the gradient of the heat kernel. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2755 / 2801
页数:47
相关论文
共 50 条
  • [31] On closability of classical Dirichlet forms
    Pugachev, OV
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 207 (02) : 330 - 343
  • [32] On the closability and convergence of dirichlet forms
    O. V. Pugachev
    Proceedings of the Steklov Institute of Mathematics, 2010, 270 : 216 - 221
  • [33] DIRICHLET PRINCIPLE FOR DIFFERENTIAL FORMS
    ANNE, C
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1989, 117 (04): : 445 - 450
  • [34] Dirichlet forms on the Sierpinski gasket
    Meyers, R
    Strichartz, RS
    Teplyaev, A
    PACIFIC JOURNAL OF MATHEMATICS, 2004, 217 (01) : 149 - 174
  • [35] Dirichlet Forms on Noncommutative Spaces
    Cipriani, Fabio
    QUANTUM POTENTIAL THEORY, 2008, 1954 : 161 - 276
  • [36] Functional calculus for dirichlet forms
    Kuwae, K
    OSAKA JOURNAL OF MATHEMATICS, 1998, 35 (03) : 683 - 715
  • [37] Homogenization in random dirichlet forms
    Albeverio, S
    Bernabei, MS
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (02) : 341 - 364
  • [38] A Note on Reflected Dirichlet Forms
    Schmidt, Marcel
    POTENTIAL ANALYSIS, 2020, 52 (02) : 245 - 279
  • [39] BILINEAR FORMS ON THE DIRICHLET SPACE
    Arcozzi, Nicola
    Rochberg, Richard
    Sawyer, Eric
    Wick, Brett D.
    ANALYSIS & PDE, 2010, 3 (01): : 21 - 47
  • [40] Residues of Logarithmic Differential Forms in Complex Analysis and Geometry
    A.G.Aleksandrov
    AnalysisinTheoryandApplications, 2014, 30 (01) : 34 - 50