Geometry and analysis of Dirichlet forms

被引:33
|
作者
Koskela, Pekka [2 ]
Zhou, Yuan [1 ,2 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Math, Beijing 100191, Peoples R China
[2] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院; 中国国家自然科学基金;
关键词
Dirichlet form; Intrinsic distance; Length structure; Differential structure; Sierpinski gasket; Gradient flow; Ricci curvature; Poincare inequality; Metric measure space; METRIC-MEASURE-SPACES; SOBOLEV SPACES; HEAT KERNEL; POINCARE INEQUALITIES; GRADIENT FLOWS; LENGTH SPACES; CURVATURE; ASYMPTOTICS; EQUATIONS; BEHAVIOR;
D O I
10.1016/j.aim.2012.08.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a regular, strongly local Dirichlet form on L-2(X, m) and d the associated intrinsic distance. Assume that the topology induced by d coincides with the original topology on X, and that X is compact, satisfies a doubling property and supports a weak (1, 2)-Poincare inequality. We first discuss the (non-) coincidence of the intrinsic length structure and the gradient structure. Under the further assumption that the Ricci curvature of X is bounded from below in the sense of Lott-Sturm-Villani, the following are shown to be equivalent: (i) the heat flow of E gives the unique gradient flow of U-infinity, (ii) E satisfies the Newtonian property, (iii) the intrinsic length structure coincides with the gradient structure. Moreover, for the standard (resistance) Dirichlet form on the Sierpinski gasket equipped with the Kusuoka measure, we identify the intrinsic length structure with the measurable Riemannian and the gradient structures. We also apply the above results to the (coarse) Ricci curvatures and asymptotics of the gradient of the heat kernel. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2755 / 2801
页数:47
相关论文
共 50 条
  • [1] Geometry and analysis of Dirichlet forms (II)
    Koskela, Pekka
    Shanmugalingam, Nageswari
    Zhou, Yuan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (07) : 2437 - 2477
  • [2] Modes of analysis and forms of geometry
    Crippa, Davide
    REVUE D HISTOIRE DES SCIENCES, 2022, 75 (02) : 527 - 529
  • [3] DIRICHLET FORMS AND WHITE NOISE-ANALYSIS
    HIDA, T
    POTTHOFF, J
    STREIT, L
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 116 (02) : 235 - 245
  • [4] Convergence of Discrete Dirichlet Forms to Continuous Dirichlet Forms on Fractals
    Roberto Peirone
    Potential Analysis, 2004, 21 : 289 - 309
  • [5] Convergence of discrete Dirichlet forms to continuous Dirichlet forms on fractals
    Peirone, R
    POTENTIAL ANALYSIS, 2004, 21 (03) : 289 - 309
  • [6] GEOMETRY OF DIRICHLET REGIONS
    EHRLICH, PE
    HOF, HCI
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (10): : 457 - 458
  • [7] The geometry of the Dirichlet manifold
    Zhong, Fengwei
    Sun, Huafei
    Zhang, Zhenning
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (03) : 859 - 870
  • [8] ON THE CLOSABILITY OF DIRICHLET FORMS
    SILVERSTEIN, ML
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 51 (02): : 185 - 200
  • [9] DECOMPOSITION OF DIRICHLET FORMS
    ALLAIN, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (12): : 545 - 547
  • [10] UNSYMMETRIC DIRICHLET FORMS
    ELLIOTT, J
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (02): : 252 - 260