Predictive accuracy of the breast cancer genetic risk model based on eight common genetic variants: The BACkSIDE study

被引:3
|
作者
Dankova, Zuzana [1 ]
Zubor, Pavol [1 ,2 ]
Marian, Grendar [3 ]
Katarina, Zelinova [2 ]
Marianna, Jagelkova [2 ]
Igor, Sf'astny [1 ]
Andrea, Kapinova [1 ]
Daniela, Vargova [1 ]
Petra, Kasajova [2 ]
Dana, Dvorska [4 ]
Michal, Kalman [5 ]
Jan, Danko [2 ]
Zora, Lasabova [1 ]
机构
[1] Comenius Univ Bratislava JFMED UK, Jessenius Fac Med Martin, Biomed Ctr Martin, Div Oncol, Martin, Slovakia
[2] Martin Univ Hosp, Clin Gynaecol & Obstet, Martin, Slovakia
[3] JFMED UK, Biomed Ctr Martin, Bioinformat Unit, Martin, Slovakia
[4] JFMED UK, Biomed Ctr Martin, Div Mol Med, Martin, Slovakia
[5] Martin Univ Hosp, Dept Pathol, Martin, Slovakia
关键词
SNP; Risk model; Breast cancer; Random Forest algorithm; AUC; GENOME-WIDE ASSOCIATION; SINGLE NUCLEOTIDE POLYMORPHISMS; SUSCEPTIBILITY; PREVENTION; DIAGNOSIS; PANEL; GWAS; SNPS;
D O I
10.1016/j.jbiotec.2019.04.014
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Breast cancer (BC) development is caused by the interaction of environmental and genetic factors. At least 90 susceptible genetic variants with different population penetration and incidence have been associated with BC. This paper therefore analysed the individual discrimination power of 8 low penetrant common genetic variants and calculated the predictive accuracy of the genetic risk model. The study enrolled 171 women with developed breast cancer (57.06 +/- 11.60 years) and 146 control subjects (50.24 +/- 10.69 years). The genotyping was performed by high resolution melting method (HRM) and confirmed by Sanger sequencing, and the Random Forest algorithm provided the ROC curve with AUC values. Significant association with BC was confirmed in 2 SNPs: rs2981582 FGFR2 and rs889312 MAP3K1, and the odds ratios of homozygotes with two risk alleles in both SNP's were higher than in heterozygotes with one mutant allele, as follows: FGFR2 TT: 1.953 (95% CI 1.014-3.834, p = 0.049), CT 1.771 (95% CI 1.088-2.899, p = 0.026) and MAP3K1 CC 2.894 (95% CI 1.028-9.566, p = 0.048), AC 1.760 (95% CI 1.108-2.813, p = 0.019). FGFR2 had the best discrimination ability, followed by MAP3K1 and CASP8. Discriminative accuracy of the genetic risk model distinguishing the breast cancer patients and controls explained by AUC was 0.728, with 70.6% sensitivity and 65.1% specificity. Our study results therefore confirmed polygenic breast cancer inheritance with important involvement of FGFR2, MAP3K1, LSP1 and CASP8 gene variants.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [21] Two genetic variants raise risk of breast cancer
    不详
    CANCER BIOLOGY & THERAPY, 2009, 8 (08) : 660 - 661
  • [22] Genetic risk variants associated with in situ breast cancer
    Campa, Daniele
    Barrdahl, Myrto
    Gaudet, Mia M.
    Black, Amanda
    Chanock, Stephen J.
    Diver, W. Ryan
    Gapstur, Susan M.
    Haiman, Christopher
    Hankinson, Susan
    Hazra, Aditi
    Henderson, Brian
    Hoover, Robert N.
    Hunter, David J.
    Joshi, Amit D.
    Kraft, Peter
    Le Marchand, Loic
    Lindstrom, Sara
    Willett, Walter
    Travis, Ruth C.
    Amiano, Pilar
    Siddiq, Afshan
    Trichopoulos, Dimitrios
    Sund, Malin
    Tjonneland, Anne
    Weiderpass, Elisabete
    Peeters, Petra H.
    Panico, Salvatore
    Dossus, Laure
    Ziegler, Regina G.
    Canzian, Federico
    Kaaks, Rudolf
    BREAST CANCER RESEARCH, 2015, 17
  • [23] Common genetic variants associated with breast cancer risk used in the Athena study to enhance models identifying women for breast cancer chemoprevention
    Theiner, Sarah
    Sawyer, Sarah D.
    Kendall, Paige
    Perry, Alexandra S.
    Wolf, Denise
    Huntsman, Scott
    Pan, Bo
    Tice, Jeffery A.
    Pearce, David A.
    Cink, Thomas
    Esserman, Laura
    Ziv, Elad
    van 't Veer, Laura
    CANCER RESEARCH, 2016, 76
  • [24] Genetic risk variants associated with in situ breast cancer
    Daniele Campa
    Myrto Barrdahl
    Mia M. Gaudet
    Amanda Black
    Stephen J. Chanock
    W. Ryan Diver
    Susan M. Gapstur
    Christopher Haiman
    Susan Hankinson
    Aditi Hazra
    Brian Henderson
    Robert N. Hoover
    David J. Hunter
    Amit D. Joshi
    Peter Kraft
    Loic Le Marchand
    Sara Lindström
    Walter Willett
    Ruth C. Travis
    Pilar Amiano
    Afshan Siddiq
    Dimitrios Trichopoulos
    Malin Sund
    Anne Tjønneland
    Elisabete Weiderpass
    Petra H. Peeters
    Salvatore Panico
    Laure Dossus
    Regina G. Ziegler
    Federico Canzian
    Rudolf Kaaks
    Breast Cancer Research, 17
  • [25] Discovery of common and rare genetic risk variants for colorectal cancer
    Jeroen R. Huyghe
    Stephanie A. Bien
    Tabitha A. Harrison
    Hyun Min Kang
    Sai Chen
    Stephanie L. Schmit
    David V. Conti
    Conghui Qu
    Jihyoun Jeon
    Christopher K. Edlund
    Peyton Greenside
    Michael Wainberg
    Fredrick R. Schumacher
    Joshua D. Smith
    David M. Levine
    Sarah C. Nelson
    Nasa A. Sinnott-Armstrong
    Demetrius Albanes
    M. Henar Alonso
    Kristin Anderson
    Coral Arnau-Collell
    Volker Arndt
    Christina Bamia
    Barbara L. Banbury
    John A. Baron
    Sonja I. Berndt
    Stéphane Bézieau
    D. Timothy Bishop
    Juergen Boehm
    Heiner Boeing
    Hermann Brenner
    Stefanie Brezina
    Stephan Buch
    Daniel D. Buchanan
    Andrea Burnett-Hartman
    Katja Butterbach
    Bette J. Caan
    Peter T. Campbell
    Christopher S. Carlson
    Sergi Castellví-Bel
    Andrew T. Chan
    Jenny Chang-Claude
    Stephen J. Chanock
    Maria-Dolores Chirlaque
    Sang Hee Cho
    Charles M. Connolly
    Amanda J. Cross
    Katarina Cuk
    Keith R. Curtis
    Albert de la Chapelle
    Nature Genetics, 2019, 51 : 76 - 87
  • [26] Discovery of common and rare genetic risk variants for colorectal cancer
    Huyghe, Jeroen R.
    Bien, Stephanie A.
    Harrison, Tabitha A.
    Kang, Hyun Min
    Chen, Sai
    Schmit, Stephanie L.
    Conti, David V.
    Qu, Conghui
    Jeon, Jihyoun
    Edlund, Christopher K.
    Greenside, Peyton
    Wainberg, Michael
    Schumacher, Fredrick R.
    Smith, Joshua D.
    Levine, David M.
    Nelson, Sarah C.
    Sinnott-Armstrong, Nasa A.
    Albanes, Demetrius
    Alonso, M. Henar
    Anderson, Kristin
    Arnau-Collell, Coral
    Arndt, Volker
    Bamia, Christina
    Banbury, Barbara L.
    Baron, John A.
    Berndt, Sonja I.
    Bezieau, Stephane
    Bishop, D. Timothy
    Boehm, Juergen
    Boeing, Heiner
    Brenner, Hermann
    Brezina, Stefanie
    Buch, Stephan
    Buchanan, Daniel D.
    Burnett-Hartman, Andrea
    Butterbach, Katja
    Caan, Bette J.
    Campbell, Peter T.
    Carlson, Christopher S.
    Castellvi-Bel, Sergi
    Chan, Andrew T.
    Chang-Claude, Jenny
    Chanock, Stephen J.
    Chirlaque, Maria-Dolores
    Cho, Sang Hee
    Connolly, Charles M.
    Cross, Amanda J.
    Cuk, Katarina
    Curtis, Keith R.
    de la Chapelle, Albert
    NATURE GENETICS, 2019, 51 (01) : 76 - +
  • [27] Common Genetic Variants in the MicroRNA Biogenesis Pathway Are not Associated with Breast Cancer Risk in Asian Women
    Sung, Hyuna
    Zhang, Ben
    Choi, Ji-Yeob
    Long, Jirong
    Park, Sue K.
    Yoo, Keun-Young
    Noh, Dong-Young
    Ahn, Sei-Hyun
    Zheng, Wei
    Kang, Daehee
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2012, 21 (08) : 1385 - 1387
  • [28] Predictive Accuracy of a Clinical and Genetic Risk Model for Atrial Fibrillation
    Khurshid, Shaan
    Mars, Nina
    Haggerty, Christopher M.
    Huang, Qiuxi
    Weng, Lu-Chen
    Hartzel, Dustin N.
    Lunetta, Kathryn L.
    Ashburner, Jeffrey M.
    Anderson, Christopher D.
    Benjamin, Emelia J.
    Salomaa, Veikko
    Ellinor, Patrick T.
    Fornwalt, Brandon K.
    Ripatti, Samuli
    Trinquart, Ludovic
    Lubitz, Steven A.
    CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2021, 14 (05): : E003355
  • [29] Common genetic variants in pre-microRNAs and risk of breast cancer in the North Indian population
    Bansal, C.
    Sharma, K. L.
    Misra, Sanjeev
    Srivastava, A. N.
    Mittal, Balraj
    Singh, U. S.
    ECANCERMEDICALSCIENCE, 2014, 8
  • [30] Evaluation of Functional Genetic Variants for Breast Cancer Risk: Results From the Shanghai Breast Cancer Study
    Zhang, Ben
    Beeghly-Fadiel, Alicia
    Lu, Wei
    Cai, Qiuyin
    Xiang, Yong-Bing
    Zheng, Ying
    Long, Jirong
    Ye, Chuanzhong
    Gu, Kai
    Shu, Xiao-Ou
    Gao, Yutang
    Zheng, Wei
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 (10) : 1159 - 1170