Influence of phase-space localization on the energy diffusion in a quantum chaotic billiard

被引:7
|
作者
Wisniacki, DA
Vergini, E
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis JJ Giambiagi, RA-1428 Buenos Aires, DF, Argentina
[2] Comis Nacl Energia Atom, Dept Fis, RA-1429 Buenos Aires, DF, Argentina
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 06期
关键词
D O I
10.1103/PhysRevE.59.6579
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The quantum dynamics of a chaotic billiard with moving boundary is considered in this paper. We found a shape parameter Hamiltonian expansion, which enables us to obtain the spectrum of the deformed billiard for deformations so large as the characteristic wavelength. Then, for a specified time-dependent shape variation, the quantum dynamics of a particle inside the billiard is integrated directly. In particular, the dispersion of the energy is studied in the Bunimovich stadium billiard with oscillating boundary. The results showed that the distribution of energy spreads diffusively for the first oscillations of the boundary ([Delta(2)E]= 2Dt). We studied the diffusion constant D as a function of the boundary velocity and found differences with theoretical predictions based on random matrix theory. By extracting highly phase-space localized structures from the spectrum, previous differences were reduced significantly. This fact provides numerical evidence of the influence of phase-space localization on the quantum diffusion of a chaotic system. [S1063-651X(99)01706-7].
引用
收藏
页码:6579 / 6584
页数:6
相关论文
共 50 条
  • [41] CHAOTIC SCATTERING - AN INVARIANT FRACTAL TILING OF PHASE-SPACE
    TIYAPAN, A
    JAFFE, C
    JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (13): : 5499 - 5511
  • [42] Phase-space analysis of lasing modes in a chaotic microcavity
    Kwon, Tae-Yoon
    Lee, Soo-Young
    Ryu, Jung-Wan
    Hentschel, Martina
    PHYSICAL REVIEW A, 2013, 88 (02):
  • [43] Phase-space localization at the lowest Landau level
    Craps, Ben
    De Clerck, Marine
    Evnin, Oleg
    Pavlov, Maxim
    PHYSICAL REVIEW A, 2024, 110 (06)
  • [44] QUANTUM CONDITION IN THE PHASE-SPACE REPRESENTATION OF QUANTUM MECHANICS
    TAKABAYASI, T
    PROGRESS OF THEORETICAL PHYSICS, 1953, 10 (01): : 119 - 120
  • [45] PHASE-SPACE REDUCTION IN NEUTRON DIFFUSION CALCULATIONS
    HARMS, AA
    BABB, AL
    NUCLEAR SCIENCE AND ENGINEERING, 1971, 43 (01) : 66 - &
  • [46] Quantum mechanics as a geometric phase: phase-space interferometers
    Luis, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (37): : 7677 - 7684
  • [47] Tsallis entropy in phase-space quantum mechanics
    Sadeghi, Parvin
    Khademi, Siamak
    Darooneh, Amir H.
    PHYSICAL REVIEW A, 2012, 86 (01):
  • [48] PHASE-SPACE DYNAMICS AND QUANTUM-MECHANICS
    DAHL, JP
    THEORETICA CHIMICA ACTA, 1992, 81 (4-5): : 329 - 337
  • [49] An extended phase-space SUSY quantum mechanics
    Ter-Kazarian, G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (05)
  • [50] QUANTUM PHASE-SPACE DENSITIES FOR A QUARTIC OSCILLATOR
    DEPOLAVIEJA, GG
    BORONDO, F
    BENITO, RM
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1994, 51 (06) : 555 - 567