Spectral Feature Selection with Particle Swarm Optimization for Hyperspectral Classification

被引:3
|
作者
Li, Jun [1 ]
Ding, Sheng [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Comp Sci & Technol, Wuhan, Peoples R China
关键词
support vector machine(SVM); Particle Swarm Optimization(PSO); Optimization; Feature Selection;
D O I
10.1109/ICICEE.2012.116
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spectral band selection is a fundamental problem in hyperspectral classification. This paper addresses the problem of band selection for hyperspectral remote sensing image and SVM parameter optimization. We propose an evolutionary classification system based on particle swarm optimization (PSO) to improve the generalization performance of the SVM classifier. The proposed PSO-SVM algorithm is performed to select the best discriminant features and appropriate SVM parameters for hyperspectral remote sensing imagery simultaneously.
引用
收藏
页码:414 / 418
页数:5
相关论文
共 50 条
  • [31] Overview of Particle Swarm Optimisation for Feature Selection in Classification
    Binh Tran
    Xue, Bing
    Zhang, Mengjie
    [J]. SIMULATED EVOLUTION AND LEARNING (SEAL 2014), 2014, 8886 : 605 - 617
  • [32] A new particle swarm feature selection method for classification
    Chen, Kun-Huang
    Chen, Li-Fei
    Su, Chao-Ton
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2014, 42 (03) : 507 - 530
  • [33] PARTICLE SWARM FEATURE SELECTION FOR FMRI PATTERN CLASSIFICATION
    Niiniskorpi, Timo
    Aberg, Malin Bjornsdotter
    Wessberg, Johan
    [J]. BIOSIGNALS 2009: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIO-INSPIRED SYSTEMS AND SIGNAL PROCESSING, 2009, : 279 - 284
  • [34] Effects of Feature Selection Using Binary Particle Swarm Optimization on Wheat Variety Classification
    Babalik, Ahmet
    Baykan, Omer Kaan
    Iscan, Hazim
    Babaoglu, Ismail
    Findik, Oguz
    [J]. ADVANCES IN INFORMATION TECHNOLOGY, 2010, 114 : 11 - 17
  • [35] Bare bones particle swarm optimization with adaptive chaotic jump for feature selection in classification
    Qiu C.
    [J]. International Journal of Computational Intelligence Systems, 2018, 11 (1) : 1 - 14
  • [36] EBPSO: Enhanced binary particle swarm optimization for cardiac disease classification with feature selection
    Wadhawan, Savita
    Maini, Raman
    [J]. EXPERT SYSTEMS, 2022, 39 (08)
  • [37] Bare bones particle swarm optimization with adaptive chaotic jump for feature selection in classification
    Qiu, Chenye
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2018, 11 (01) : 1 - 14
  • [38] Feature Selection and Mass Classification Using Particle Swarm Optimization and Support Vector Machine
    Wong, Man To
    He, Xiangjian
    Yeh, Wei-Chang
    Ibrahim, Zaidah
    Chung, Yuk Ying
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2014, PT III, 2014, 8836 : 439 - 446
  • [39] Catfish Binary Particle Swarm Optimization for Feature Selection
    Chuang, Li-Yeh
    Tsai, Sheng-Wei
    Yang, Cheng-Hong
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING (IACSIT ICMLC 2009), 2009, : 40 - 44
  • [40] An Interpretable Feature Selection Based on Particle Swarm Optimization
    Liu, Yi
    Qin, Wei
    Zheng, Qibin
    Li, Gensong
    Li, Mengmeng
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (08) : 1495 - 1500