A Method for Analyzing Solution Diversity in Topic Models

被引:0
|
作者
Uchiyama, Toshio [1 ]
机构
[1] Hokkaido Informat Univ, Dept Syst & Informat, Ebetsu, Hokkaido, Japan
关键词
topic model; PLSA; diversity of solutions; normalized mutual information; information-theoretic clustering;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A topic model is a statistical model for modeling high dimensional count data. Many different parameters (solutions) of a topic model can be obtained through a learning algorithm due to different initial conditions. This paper focuses on diversity of solutions. To utilize diversity of solutions, it is necessary to acquire distribution structure of them. Therefore, this paper proposes a novel method to define similarity (inner product) of solutions using normalized mutual information to analyze distribution of solutions. Experimental results for text data are presented to show the usefulness of the proposed method.
引用
收藏
页码:29 / 34
页数:6
相关论文
共 50 条
  • [41] A new method for mining information of gut microbiome with probabilistic topic models
    Xiong, Xin
    Li, Minrui
    Ren, Yuyan
    Yao, Xusheng
    Du, Yuhui
    Huang, Qingsong
    Kong, Xiangyang
    He, Jianfeng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (11) : 16081 - 16104
  • [42] Methodbook: Recommending Move Method Refactorings via Relational Topic Models
    Bavota, Gabriele
    Oliveto, Rocco
    Gethers, Malcom
    Poshyvanyk, Denys
    De Lucia, Andrea
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2014, 40 (07) : 671 - 694
  • [43] Topic Models: A Novel Method for Modeling Couple and Family Text Data
    Atkins, David C.
    Rubin, Timothy N.
    Steyvers, Mark
    Doeden, Michelle A.
    Baucom, Brian R.
    Christensen, Andrew
    JOURNAL OF FAMILY PSYCHOLOGY, 2012, 26 (05) : 816 - 827
  • [44] Analyzing the results of automatic new topic identification
    Ozmutla, Seda
    Cosar, Gencer C.
    LIBRARY HI TECH, 2008, 26 (03) : 466 - 487
  • [45] isoTarget: A Genetic Method for Analyzing the Functional Diversity of Splicing Isoforms In Vivo
    Liu, Hao
    Pizzano, Sarah
    Li, Ruonan
    Zhao, Wenquan
    Veling, Macy W.
    Hu, Yujia
    Yang, Limin
    Ye, Bing
    CELL REPORTS, 2020, 33 (06):
  • [46] A method for quantifying and visualizing the diversity of QSAR models
    Izrailev, S
    Agrafiotis, DK
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2004, 22 (04): : 275 - 284
  • [47] Analyzing Topic Attention in Online Small Groups
    Caetano, Josemar Alves
    Almeida, Jussara
    Goncalves, Marcos
    Meira, Wagner, Jr.
    Marques-Neto, Humberto T.
    Almeida, Virgilio
    PROCEEDINGS OF THE 2021 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2021, 2021, : 64 - 68
  • [48] Multirelational Topic Models
    Zeng, Jia
    Cheung, William K.
    Li, Chun-hung
    Liu, Jiming
    2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 1070 - 1075
  • [49] Differential Topic Models
    Chen, Changyou
    Buntine, Wray
    Ding, Nan
    Xie, Lexing
    Du, Lan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (02) : 230 - 242
  • [50] Analyzing module diversity
    Bergel, A
    Ducasse, E
    Nierstrasz, O
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2005, 11 (10) : 1613 - 1644