On the distribution of the nodal sets of random spherical harmonics

被引:25
|
作者
Wigman, Igor [1 ]
机构
[1] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
关键词
EIGENFUNCTIONS; LINES; TORUS;
D O I
10.1063/1.3056589
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the volume of the nodal set of eigenfunctions of the Laplacian on the m-dimensional sphere. It is well known that the eigenspaces corresponding to E(n) =n(n+m-1) are the spaces epsilon(n) of spherical harmonics of degree n of dimension N. We use the multiplicity of the eigenvalues to endow epsilon(n) with the Gaussian probability measure and study the distribution of the m-dimensional volume of the nodal sets of a randomly chosen function. The expected volume is proportional to root E(n). One of our main results is bounding the variance of the volume to be O(En/root N). In addition to the volume of the nodal set, we study its Leray measure. We find that its expected value is n independent. We are able to determine that the asymptotic form of the variance is (const)/N. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3056589]
引用
收藏
页数:44
相关论文
共 50 条
  • [41] Generalization of the variational nodal method to spherical harmonics approximations in R-Z geometry
    Zhang, H
    Lewis, EE
    NUCLEAR SCIENCE AND ENGINEERING, 2006, 152 (01) : 29 - 36
  • [42] Gaussian Random Measures Generated by Berry's Nodal Sets
    Peccati, Giovanni
    Vidotto, Anna
    JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (04) : 996 - 1027
  • [43] Asymptotic topology of excursion and nodal sets of Gaussian random fields
    Gayet, Damien
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (790): : 149 - 195
  • [44] Gaussian Random Measures Generated by Berry’s Nodal Sets
    Giovanni Peccati
    Anna Vidotto
    Journal of Statistical Physics, 2020, 178 : 996 - 1027
  • [45] Topologies of Nodal Sets of Random Band-Limited Functions
    Sarnak, Peter
    Wigman, Igor
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (02) : 275 - 342
  • [46] A NODAL SOLUTION OF THE MULTIGROUP NEUTRON-TRANSPORT EQUATION USING SPHERICAL-HARMONICS
    INANC, F
    ROHACH, AF
    ANNALS OF NUCLEAR ENERGY, 1988, 15 (10-11) : 501 - 509
  • [47] A study of the radiative transfer equation using a spherical harmonics-nodal collocation method
    Capilla, M. T.
    Talavera, C. F.
    Ginestar, D.
    Verdu, G.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 189 : 25 - 36
  • [48] NODAL AREA DISTRIBUTION FOR ARITHMETIC RANDOM WAVES
    Cammarota, Valentina
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (05) : 3539 - 3564
  • [49] SPHERICAL HARMONICS
    SEELEY, RT
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (4P2): : 115 - &
  • [50] ON THE CORRELATION BETWEEN CRITICAL POINTS AND CRITICAL VALUES FOR RANDOM SPHERICAL HARMONICS
    Cammarota, V
    Todino, A. P.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, : 41 - 62