Degree sequence and supereulerian graphs

被引:3
|
作者
Fan, Suohai [2 ]
Lai, Hong-Jian [1 ]
Shao, Yehong [3 ]
Zhang, Taoye [4 ]
Zhou, Ju
机构
[1] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[2] Jinan Univ Guangzhou, Dept Math, Guangzhou 510632, Guangdong, Peoples R China
[3] Ohio Univ So, Ironton, OH 45638 USA
[4] Penn State Worthington Scranton, Dept Math, Dunmore, PA 18512 USA
关键词
Degree sequence; Collapsible graphs; Hamiltonian line graphs; Supereulerian graphs;
D O I
10.1016/j.disc.2007.11.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sequence d = (d(1), d(2),...,d(n)) is graphic if there is a simple graph G with degree sequence d, and such a graph G is called a realization of d. A graphic sequence d is line-hamiltonian if d has a realization G such that L(G) is hamiltonian, and is supereulerian if d has a realization G with a spanning eulerian subgraph. In this paper, it is proved that a nonincreasing graphic sequence d = (d(1), d(2),...,d(n)) has a supereulerian realization if and only if d(n) >= 2 and that d is line-hamiltonian if and only if either d(1) = n - 1, or Sigma(di=1) d(i) <= Sigma(dj >= 2)(d(j) - 2). (C) 2007 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:6626 / 6631
页数:6
相关论文
共 50 条
  • [41] Supereulerian graphs with width s and s-collapsible graphs
    Li, Ping
    Li, Hao
    Chen, Ye
    Fleischner, Herbert
    Lai, Hong-Jian
    DISCRETE APPLIED MATHEMATICS, 2016, 200 : 79 - 94
  • [42] On (s,t)-Supereulerian Triangle Free Graphs
    Li, Xiaomin
    Li, Shengyu
    2009 WRI WORLD CONGRESS ON SOFTWARE ENGINEERING, VOL 2, PROCEEDINGS, 2009, : 398 - +
  • [43] On (s,t)-supereulerian graphs in locally highly connected graphs
    Lei, Lan
    Li, Xiaomin
    Wang, Bin
    Lai, Hong-Jian
    DISCRETE MATHEMATICS, 2010, 310 (04) : 929 - 934
  • [44] On Supereulerian 2-Edge-Coloured Graphs
    Jørgen Bang-Jensen
    Thomas Bellitto
    Anders Yeo
    Graphs and Combinatorics, 2021, 37 : 2601 - 2620
  • [45] Vertex degree sums for supereulerian bipartite digraphs
    Li, Jiaqi
    Zhang, Yi
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 475
  • [46] On Supereulerian 2-Edge-Coloured Graphs
    Bang-Jensen, Jorgen
    Bellitto, Thomas
    Yeo, Anders
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2601 - 2620
  • [47] On (s, t)-supereulerian locally connected graphs
    Lei, Lan
    Li, Xiao-Min
    Wang, Bin
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 384 - +
  • [48] On 3-Edge-Connected Supereulerian Graphs
    Hong-Jian Lai
    Hao Li
    Yehong Shao
    Mingquan Zhan
    Graphs and Combinatorics, 2011, 27 : 207 - 214
  • [49] Squares of graphs are optimally (s, t )-supereulerian
    Yan, Yue
    Lei, Lan
    Wu, Yang
    Lai, Hong-Jian
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 331 - 342
  • [50] PERCOLATION ON RANDOM GRAPHS WITH A FIXED DEGREE SEQUENCE
    Fountoulakis, Nikolaos
    Joos, Felix
    Perarnau, Guillem
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 1 - 46