Degree sequence and supereulerian graphs

被引:3
|
作者
Fan, Suohai [2 ]
Lai, Hong-Jian [1 ]
Shao, Yehong [3 ]
Zhang, Taoye [4 ]
Zhou, Ju
机构
[1] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[2] Jinan Univ Guangzhou, Dept Math, Guangzhou 510632, Guangdong, Peoples R China
[3] Ohio Univ So, Ironton, OH 45638 USA
[4] Penn State Worthington Scranton, Dept Math, Dunmore, PA 18512 USA
关键词
Degree sequence; Collapsible graphs; Hamiltonian line graphs; Supereulerian graphs;
D O I
10.1016/j.disc.2007.11.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sequence d = (d(1), d(2),...,d(n)) is graphic if there is a simple graph G with degree sequence d, and such a graph G is called a realization of d. A graphic sequence d is line-hamiltonian if d has a realization G such that L(G) is hamiltonian, and is supereulerian if d has a realization G with a spanning eulerian subgraph. In this paper, it is proved that a nonincreasing graphic sequence d = (d(1), d(2),...,d(n)) has a supereulerian realization if and only if d(n) >= 2 and that d is line-hamiltonian if and only if either d(1) = n - 1, or Sigma(di=1) d(i) <= Sigma(dj >= 2)(d(j) - 2). (C) 2007 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:6626 / 6631
页数:6
相关论文
共 50 条
  • [1] A note on minimum degree conditions for supereulerian graphs
    Broersma, HJ
    Xiong, LM
    DISCRETE APPLIED MATHEMATICS, 2002, 120 (1-3) : 35 - 43
  • [2] Supereulerian Graphs with Constraints on the Matching Number and Minimum Degree
    Algefari, Mansour J.
    Lai, Hong-Jian
    GRAPHS AND COMBINATORICS, 2021, 37 (01) : 55 - 64
  • [3] Supereulerian Graphs with Constraints on the Matching Number and Minimum Degree
    Mansour J. Algefari
    Hong-Jian Lai
    Graphs and Combinatorics, 2021, 37 : 55 - 64
  • [4] On (s, t)-supereulerian graphs with linear degree bounds
    Lei, Lan
    Xiong, Wei
    Xie, Yikang
    Zhan, Mingquan
    Lai, Hong-Jian
    DISCRETE MATHEMATICS, 2021, 344 (03)
  • [5] A degree-condition for (s, t)-supereulerian graphs
    Wang, Bin
    Li, Xiao-Min
    Lei, Lan
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 381 - +
  • [6] Supereulerian graphs, independent sets, and degree-sum conditions
    Chen, ZH
    DISCRETE MATHEMATICS, 1998, 179 (1-3) : 73 - 87
  • [7] Multigraphic degree sequences and supereulerian graphs, disjoint spanning trees
    Gu, Xiaofeng
    Lai, Hong-Jian
    Liang, Yanting
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1426 - 1429
  • [8] SUPEREULERIAN GRAPHS - A SURVEY
    CATLIN, PA
    JOURNAL OF GRAPH THEORY, 1992, 16 (02) : 177 - 196
  • [9] Supereulerian planar graphs
    Lai, HJ
    Li, DY
    Mao, JZ
    Zhan, MQ
    ARS COMBINATORIA, 2005, 75 : 313 - 331
  • [10] On Generalizations of Supereulerian Graphs
    Song, Sulin
    ProQuest Dissertations and Theses Global, 2022,