共 50 条
- [1] Generating Data using Monte Carlo Dropout [J]. 2019 IEEE 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2019), 2019, : 509 - 515
- [2] Leveraging Variational Autoencoders for Multiple Data Imputation [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 491 - 506
- [3] Markov chain Monte Carlo multiple imputation using Bayesian networks for incomplete intelligent transportation systems data [J]. INFORMATION SYSTEMS AND TECHNOLOGY, 2005, (1935): : 57 - 67
- [4] Multiple imputation of missing at random data: General points and presentation of a Monte-Carlo method [J]. REVUE D EPIDEMIOLOGIE ET DE SANTE PUBLIQUE, 2009, 57 (05): : 361 - 372
- [6] Physiological Waveform Imputation of Missing Data using Convolutional Autoencoders [J]. 2018 IEEE 20TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATIONS AND SERVICES (HEALTHCOM), 2018,
- [7] Imputation of Missing Traffic Flow Data Using Denoising Autoencoders [J]. 12TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 4TH INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2021, 184 : 84 - 91
- [8] A Markov chain Monte Carlo algorithm for multiple imputation in large surveys [J]. AStA Advances in Statistical Analysis, 2008, 92 : 101 - 114
- [10] Explainable Fingerprint ROI Segmentation Using Monte Carlo Dropout [J]. 2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2021), 2021, : 60 - 69