Initialization of K-Modes Clustering for Categorical Data

被引:0
|
作者
Li Tao-ying [1 ]
Chen Yan [1 ]
Jin Zhi-hong [1 ]
Li Ye [1 ]
机构
[1] Dalian Maritime Univ, Transportat Management Coll, Dalian 116026, Peoples R China
关键词
categorical data; density and grid measure; initialization of clustering; the k-modes clustering; MEANS ALGORITHM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The k-modes clustering algorithm is undoubtedly one of the most widely used partitional algorithms for categorical data. Unfortunately, due to its gradient descent nature, this algorithm is highly sensitive to the initialization of clustering. Categorical initialization methods have been proposed to address this problem. In this paper, we present an overview of initialization methods of clustering for numerical data and categorical data respectively with an emphasis on their computational efficiency. We then propose a new initialization method for categorical data, which can obtain the good initial cluster centers using the new distance base on the RD, and explore the methods of density and grid. Finally, proposed method has been tested on diagnosis dataset, a real world data set from UCI Machine Learning Repository, and been analyzed the experimental results, which illustrates that the proposed method is effective and efficient for initializing categorical data.
引用
收藏
页码:107 / 112
页数:6
相关论文
共 50 条
  • [31] A dissimilarity measure for the k-Modes clustering algorithm
    Cao, Fuyuan
    Liang, Jiye
    Li, Deyu
    Bai, Liang
    Dang, Chuangyin
    [J]. KNOWLEDGE-BASED SYSTEMS, 2012, 26 : 120 - 127
  • [32] A new initialization method for clustering categorical data
    Wu, Shu
    Jiang, Qingshan
    Huang, Joshua Zhexue
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2007, 4426 : 972 - +
  • [33] A new initialization method for categorical data clustering
    Cao, Fuyuan
    Liang, Jiye
    Bai, Liang
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (07) : 10223 - 10228
  • [34] CLEKMODES: a modified k-modes clustering algorithm
    Mastrogiannis, N.
    Giannikos, I.
    Boutsinas, B.
    Antzoulatos, G.
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2009, 60 (08) : 1085 - 1095
  • [35] Block Fuzzy K-modes Clustering Algorithm
    Yang, Miin-Shen
    Lin, Chih-Ying
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 384 - 389
  • [36] k-PbC: an improved cluster center initialization for categorical data clustering
    Duy-Tai Dinh
    Van-Nam Huynh
    [J]. Applied Intelligence, 2020, 50 : 2610 - 2632
  • [37] k-PbC: an improved cluster center initialization for categorical data clustering
    Duy-Tai Dinh
    Van-Nam Huynh
    [J]. APPLIED INTELLIGENCE, 2020, 50 (08) : 2610 - 2632
  • [38] Attribute value weighting in k-modes clustering
    He, Zengyou
    Xu, Xiaofei
    Deng, Shengchun
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) : 15365 - 15369
  • [39] A Novel Consensus Fuzzy K-Modes Clustering Using Coupling DNA-Chain-Hypergraph P System for Categorical Data
    Jiang, Zhenni
    Liu, Xiyu
    [J]. PROCESSES, 2020, 8 (10) : 1 - 17
  • [40] A New Possibilistic Clustering Method: The Possibilistic K-Modes
    Ammar, Asma
    Elouedi, Zied
    [J]. AI(STAR)IA 2011: ARTIFICIAL INTELLIGENCE AROUND MAN AND BEYOND, 2011, 6934 : 413 - 419