Analytic continuation of the Lucas zeta and L-functions

被引:13
|
作者
Kamano, Ken [1 ]
机构
[1] Osaka Inst Technol, Dept Math, Asahi, Osaka 5358585, Japan
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2013年 / 24卷 / 03期
关键词
Lucas sequences; The Fibonacci zeta function; Dirichlet's L-functions; FIBONACCI NUMBERS; RECIPROCAL SUMS;
D O I
10.1016/j.indag.2013.04.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Lucas zeta function defined by using the Lucas sequence which is a generalization of the Fibonacci sequence. This zeta function can be meromorphically continued to the whole complex plane, and in a special case, it has "trivial zeros" like the Riemann zeta function. Analogues of Dirichlet's L-functions are also investigated. (C) 2013 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:637 / 646
页数:10
相关论文
共 50 条
  • [31] ANALYTIC CONTINUATION OF PARTIAL ZETA-FUNCTIONS OF ARITHMETIC ORDERS
    BUSHNELL, CJ
    REINER, I
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1984, 349 : 160 - 178
  • [32] Analytic theory of L-functions for GLn
    Cogdell, JW
    [J]. INTRODUCTION TO THE LANGLANDS PROGRAM, 2003, : 197 - 228
  • [33] Expanding maps on cantor sets and analytic continuation of zeta functions
    Naud, F
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2005, 38 (01): : 116 - 153
  • [34] Perspectives on the analytic theory of L-functions
    Iwaniec, H
    Sarnak, P
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, : 705 - 741
  • [35] Zeros of Dedekind zeta functions and holomorphy of Artin L-functions
    Wong, Peng-Jie
    [J]. JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2019, 34 (02) : 253 - 261
  • [36] ON AN ANALYTIC CONTINUATION OF ZETA(S)
    BALASUBRAMANIAN, R
    RAMACHANDRA, K
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1987, 18 (09): : 790 - 793
  • [37] ON ZETA AND L-FUNCTIONS OVER QUADRATIC NUMBER FIELDS
    Kokluce, Bulent
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2008, 26 (04): : 267 - 280
  • [38] Zeta and L-functions of finite quotients of apartments and buildings
    Kang, Ming-Hsuan
    Li, Wen-Ching Winnie
    Wang, Chian-Jen
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2018, 228 (01) : 79 - 117
  • [39] Zeta and L-functions and Bernoulli polynomials of root systems
    Komori, Yasushi
    Matsumoto, Kohji
    Tsumura, Hirofumi
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2008, 84 (05) : 57 - 62
  • [40] Zeta and L-functions of finite quotients of apartments and buildings
    Ming-Hsuan Kang
    Wen-Ching Winnie Li
    Chian-Jen Wang
    [J]. Israel Journal of Mathematics, 2018, 228 : 79 - 117