Locally nilpotent groups with all subgroups normal-by-(finite rank)

被引:0
|
作者
Longobardi, P [1 ]
Maj, M [1 ]
Smith, H [1 ]
机构
[1] Univ Naples, Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a locally nilpotent group in which H/Core(G)H has finite rank for all subgroups H. If G is torsion-free then G/Z(G) has finite rank. In general G has an abelian normal subgroup A with G/A of finite rank, and H/Core(G)H has bounded rank for all H. Further results are obtained in the case where H/Core(G)H has rank at most t (a fixed positive integer) for all subgroups H.
引用
收藏
页码:291 / 299
页数:9
相关论文
共 50 条
  • [31] Nilpotent subgroups of groups with all subgroups subnormal
    Casolo, C
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 : 15 - 22
  • [32] Groups with all subgroups normal-by-finite
    Buckley, JT
    Lennox, JC
    Neumann, BH
    Smith, H
    Wiegold, J
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1995, 59 : 384 - 398
  • [33] Finite simple groups the nilpotent residuals of all of whose subgroups are TI-subgroups
    Meng, Wei
    Lu, Jiakuan
    Zhang, Boru
    RICERCHE DI MATEMATICA, 2024, 73 (05) : 2605 - 2615
  • [34] Locally finite groups with a nilpotent or locally nilpotent maximal subgroup
    Bruno, B
    Napolitani, F
    JOURNAL OF GROUP THEORY, 1999, 2 (04) : 393 - 399
  • [35] Finite groups with a system of nilpotent subgroups
    Li, SR
    Dark, RS
    ALGEBRA COLLOQUIUM, 2005, 12 (02) : 199 - 204
  • [36] COUNTABLE LOCALLY NILPOTENT GROUPS OF FINITE EXPONENT WITHOUT MAXIMAL-SUBGROUPS
    VAUGHANLEE, MR
    WIEGOLD, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1981, 13 (JAN) : 45 - 46
  • [37] Infinite locally finite groups with the locally nilpotent non-Dedekind norm of decomposable subgroups
    Lukashova, Tetyana D.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) : 1052 - 1057
  • [38] Locally graded groups with all non-nilpotent subgroups permutable, II
    Atlihan, Sevgi
    Dixon, Martyn R.
    Evans, Martin J.
    JOURNAL OF ALGEBRA, 2024, 641 : 530 - 533
  • [39] Generation of finite groups by nilpotent subgroups
    Damian, E
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6B (01): : 245 - 255
  • [40] Conjugacy classes of non-normal subgroups in finite nilpotent groups
    Fernandez-Alcober, Gustavo A.
    Legarreta, Leire
    JOURNAL OF GROUP THEORY, 2008, 11 (03) : 381 - 397