Multimodal Sensory Feedback for Virtual Proprioception in Powered Upper-Limb Prostheses

被引:0
|
作者
Lee, Joshua [1 ]
Choi, Mi Hyun [2 ,3 ]
Jung, Ji Hwan [1 ]
Hammond, Frank L., III [2 ,4 ]
机构
[1] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Coulter Dept Biomed Engn, 313 Ferst Dr NW, Atlanta, GA 30332 USA
[3] Emory Univ, Atlanta, GA 30322 USA
[4] Georgia Inst Technol, Woodruff Sch Mech, 313 Ferst Dr NW, Atlanta, GA 30332 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper demonstrates the use of mechanotactile feedback to provide humans with virtual proprioception of their prosthetic devices. Traditional prostheses provide little or no sensory feedback, requiring the user to visually inspect many tasks performed with device. Virtual proprioception can allow humans to incorporate the kinematic and kinetic states of an external device into their body image, leading to greater physical intuition of device activity, lower cognitive loading, more reliable usage models, and more dexterous manipulation. Vibrotactile stimuli are used the display sensory information about the grasp aperture, grasp force, and object surface texture through a powered split-hook prosthesis. Experimental evaluation of manipulation with mechanotactile-based virtual proprioception strong capability to accurately determine object properties (85.4% success) without need for visual inspection.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 50 条
  • [31] Processing of myoelectric signals by feature selection and dimensionality reduction for the control of powered upper-limb prostheses
    Buchenrieder, Klaus
    [J]. COMPUTER AIDED SYSTEMS THEORY- EUROCAST 2007, 2007, 4739 : 1057 - 1065
  • [32] Review on Tactile Sensory Feedback of Prosthetic Hands for the Upper-Limb Amputees by Sensory Afferent Stimulation
    柴国鸿
    隋晓红
    李鹏
    刘小旋
    蓝宁
    [J]. Journal of Shanghai Jiaotong University(Science), 2014, 19 (05) : 587 - 591
  • [33] A review of invasive and non-invasive sensory feedback in upper limb prostheses
    Svensson, Pamela
    Wijk, Ulrika
    Bjorkman, Anders
    Antfolk, Christian
    [J]. EXPERT REVIEW OF MEDICAL DEVICES, 2017, 14 (06) : 439 - 447
  • [34] Real-Time Contact Sensory Feedback for Upper Limb Robotic Prostheses
    Aziziaghdam, Mohammad
    Samur, Evren
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2017, 22 (04) : 1786 - 1795
  • [35] Scalp-Targeted Haptic Proprioception for Upper-Limb Prosthetics
    Gallone, Marco
    Naish, Michael D.
    [J]. 2022 INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR), 2022,
  • [36] AUGMENTED AUDITORY INFORMATION IN THE CONTROL OF UPPER-LIMB PROSTHESES
    PATTERSON, P
    SHEA, CH
    [J]. ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 1985, 66 (04): : 243 - 245
  • [37] CONTROL OF UPPER-LIMB PROSTHESES - CASE FOR NEUROELECTRIC CONTROL
    DE LUCA, CJ
    [J]. JOURNAL OF MEDICAL ENGINEERING & TECHNOLOGY, 1978, 2 (02) : 57 - 61
  • [38] Expert opinions on success factors for upper-limb prostheses
    Schultz, Aimee E.
    Baade, Susan P.
    Kuiken, Todd A.
    [J]. JOURNAL OF REHABILITATION RESEARCH AND DEVELOPMENT, 2007, 44 (04): : 483 - 489
  • [39] Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use
    Scheme, Erik
    Englehart, Kevin
    [J]. JOURNAL OF REHABILITATION RESEARCH AND DEVELOPMENT, 2011, 48 (06): : 643 - 659
  • [40] Increased upper-limb sensory attenuation with age
    Parthasharathy, Manasa
    Mantini, Dante
    de Xivry, Jean-Jacques Orban
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2022, 127 (02) : 474 - 492