Ablation of Ventricular Myosin Regulatory Light Chain Phosphorylation in Mice Causes Cardiac Dysfunction in Situ and Affects Neighboring Myofilament Protein Phosphorylation

被引:91
|
作者
Scruggs, Sarah B. [1 ,2 ]
Hinken, Aaron C. [1 ,2 ]
Thawornkaiwong, Ariyaporn [1 ,2 ]
Robbins, Jeffrey [3 ]
Walker, Lori A. [4 ]
de Tombe, Pieter P. [1 ,2 ]
Geenen, David L. [1 ,2 ]
Buttrick, Peter M. [4 ]
Solaro, R. John [1 ,2 ]
机构
[1] Univ Illinois, Dept Physiol & Biophys, Chicago, IL 60612 USA
[2] Univ Illinois, Cardiovasc Res Ctr, Chicago, IL 60612 USA
[3] Cincinnati Childrens Hosp, Dept Mol Cardiovasc Biol, Cincinnati, OH 45229 USA
[4] Univ Colorado, Div Cardiol, Aurora, CO 80045 USA
基金
美国国家卫生研究院;
关键词
KINASE-A PHOSPHORYLATION; SKELETAL-MUSCLE FIBERS; PERFUSED RABBIT HEART; CANINE LEFT-VENTRICLE; TROPONIN-I; RAT HEARTS; INORGANIC-PHOSPHATE; FORCE DEVELOPMENT; CA2+ SENSITIVITY; ISOMETRIC FORCE;
D O I
10.1074/jbc.M807414200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
There is little direct evidence on the role of myosin regulatory light chain phosphorylation in ejecting hearts. In studies reported here we determined the effects of regulatory light chain (RLC) phosphorylation on in situ cardiac systolic mechanics and in vitro myofibrillar mechanics. We compared data obtained from control nontransgenic mice (NTG) with a transgenic mouse model expressing a cardiac specific nonphosphorylatable RLC (TG-RLC(P-). We also determined whether the depression in RLC phosphorylation affected phosphorylation of other sarcomeric proteins. TG-RLC(P-) demonstrated decreases in base-line load-independent measures of contractility and power and an increase in ejection duration together with a depression in phosphorylation of myosin-binding protein-C (MyBP-C) and troponin I (TnI). Although TG-RLC(P-) displayed a significantly reduced response to beta(1)-adrenergic stimulation, MyBP-C and TnI were phosphorylated to a similar level in TG-RLC(P-) and NTG, suggesting cAMP-dependent protein kinase signaling to these proteins was not disrupted. A major finding was that NTG controls were significantly phosphorylated at RLC serine 15 following beta(1)-adrenergic stimulation, a mechanism prevented in TG-RLC(P-), thus providing a biochemical difference in beta(1)-adrenergic responsiveness at the level of the sarcomere. Our measurements of Ca2+ tension and Ca2+-ATPase rate relations in detergent-extracted fiber bundles from LV trabeculae demonstrated a relative decrease in maximum Ca2+-activated tension and tension cost in TG-RLC(P-) fibers, with no change in Ca2+ sensitivity. Our data indicate that RLC phosphorylation is critical for normal ejection and response to beta(1)-adrenergic stimulation. Our data also indicate that the lack of RLC phosphorylation promotes compensatory changes in MyBP-C and TnI phosphorylation, which when normalized do not restore function.
引用
收藏
页码:5097 / 5106
页数:10
相关论文
共 50 条
  • [21] Cardiac Myosin Light Chain Kinase Regulates Cardiac Contractility and the Level of Phosphorylation of Myosin Light Chain in vivo
    Warren, Sonisha A.
    Briggs, Laura E.
    Kasahara, Hideko
    [J]. CIRCULATION, 2009, 120 (18) : S870 - S870
  • [22] Site-specific phosphorylation of ventricular myosin regulatory light chain in response to adrenergic stimulation
    Scruggs, Sarah B.
    Wolska, Beata M.
    Waters, Stephen B.
    Solaro, R. John
    Walker, Lori A.
    Buttrick, Peter I.
    [J]. BIOPHYSICAL JOURNAL, 2007, : 474A - 474A
  • [23] The significance of regulatory light chain phosphorylation in cardiac physiology
    Scruggs, Sarah B.
    Solaro, R. John
    [J]. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2011, 510 (02) : 129 - 134
  • [24] Structural Changes in the Myosin Motors Induced by Stretch and Phosphorylation of the Myosin Regulatory Light Chain in Rat Cardiac Trabeculae
    Park-Holohan, So-Jin
    Brunello, Elisabetta
    Kampourakis, Thomas
    Rees, Martin
    Irving, Malcolm
    Fusi, Luca
    [J]. BIOPHYSICAL JOURNAL, 2021, 120 (03) : 251A - 252A
  • [25] The effect of myosin regulatory light chain phosphorylation on the frequency-dependent regulation of cardiac function
    Dias, Fernando A. L.
    Walker, Lori A.
    Arteaga, Grace M.
    Walker, John S.
    Vijayan, Kalpana
    Pena, James R.
    Ke, Yunbo
    Fogaca, Rosalvo T. H.
    Sanbe, Atsushi
    Robbins, Jeffrey
    Wolska, Beata M.
    [J]. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2006, 41 (02) : 330 - 339
  • [26] A spatial gradient of myosin regulatory light chain phosphorylation is critical to the complex pattern of cardiac contraction
    Davis, JS
    Hassanzadeh, S
    Winitsky, S
    Wen, H
    Epstein, ND
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2001, 12 : 35A - 35A
  • [27] The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation
    Davis, JS
    Hassanzadeh, S
    Winitsky, S
    Lin, H
    Satorius, C
    Vemuri, R
    Aletras, AH
    Wen, H
    Epstein, ND
    [J]. CELL, 2001, 107 (05) : 631 - 641
  • [28] ASK1-induced phosphorylation of myofilament proteins causes cardiac contractile dysfunction
    He, XR
    Min, W
    [J]. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2002, 22 (05) : A70 - A70
  • [29] Myosin Light Chain Phosphorylation Is Critical for Adaptation to Cardiac Stress
    Warren, Sonisha A.
    Briggs, Laura E.
    Zeng, Huadong
    Chuang, Joyce
    Chang, Eileen I.
    Terada, Ryota
    Li, Moyi
    Swanson, Maurice S.
    Lecker, Stewart H.
    Willis, Monte S.
    Spinale, Francis G.
    Maupin-Furlowe, Julie
    McMullen, Julie R.
    Moss, Richard L.
    Kasahara, Hideko
    [J]. CIRCULATION, 2012, 126 (22) : 2575 - +
  • [30] Myosin Regulatory Light Chain (RLC) Phosphorylation Change as a Modulator of Cardiac Muscle Contraction in Disease
    Toepfer, Christopher
    Caorsi, Valentina
    Kampourakis, Thomas
    Sikkel, Markus B.
    West, Timothy G.
    Leung, Man-Ching
    Al-Saud, Sara A.
    MacLeod, Kenneth T.
    Lyon, Alexander R.
    Marston, Steven B.
    Sellers, James R.
    Ferenczi, Michael A.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (19) : 13446 - 13454