Optimization of Pinocembrin Biosynthesis in Saccharomyces cerevisiae

被引:11
|
作者
Mohedano, Marta Tous [1 ]
Mao, Jiwei [1 ]
Chen, Yun [1 ]
机构
[1] Chalmers Univ Technol, Dept Biol & Biol Engn, SE-41296 Gothenburg, Sweden
来源
关键词
flavonoids; tolerance; byproduct; pathway optimization; yeast; DE-NOVO BIOSYNTHESIS; EFFICIENT BIOSYNTHESIS; YEAST EXPRESSION; ACID; PATHWAY; (2S)-NARINGENIN; DERIVATIVES; BAICALEIN; CLONING;
D O I
10.1021/acssynbio.2c00425
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The flavonoid pinocembrin and its derivatives have gained increasing interest for their benefits on human health. While pinocembrin and its derivatives can be produced in engineered Saccharomyces cerevisiae, yields remain low. Here, we describe novel strategies for improved de novo biosynthesis of pinocembrin from glucose based on overcoming existing limitations in S. cerevisiae. First, we identified cinnamic acid as an inhibitor of pinocembrin synthesis. Second, by screening for more efficient enzymes and optimizing the expression of downstream genes, we reduced cinnamic acid accumulation. Third, we addressed other limiting factors by boosting the availability of the precursor malonyl-CoA, while eliminating the undesired byproduct 2 ',4 ',6 '-trihydroxy dihydrochalcone. After optimizing cultivation conditions, 80 mg/L pinocembrin was obtained in a shake flask, the highest yield reported for S. cerevisiae. Finally, we demonstrated that pinocembrin-producing strains could be further engineered to generate 25 mg/L chrysin, another interesting flavone. The strains generated in this study will facilitate the production of flavonoids through the pinocembrin biosynthetic pathway.
引用
下载
收藏
页码:144 / 152
页数:9
相关论文
共 50 条
  • [41] Metabolic engineering of taxane biosynthesis in Saccharomyces cerevisiae
    Dahm, P.
    Engels, B.
    Scholz, S.
    Jennewein, S.
    NEW BIOTECHNOLOGY, 2009, 25 : S332 - S333
  • [42] Heterologous biosynthesis of artemisinic acid in Saccharomyces cerevisiae
    Li, C.
    Li, J.
    Wang, G.
    Li, X.
    JOURNAL OF APPLIED MICROBIOLOGY, 2016, 120 (06) : 1466 - 1478
  • [43] REGULATION OF STEROL BIOSYNTHESIS IN SACCHAROMYCES-CEREVISIAE
    BEHALOVA, B
    BLAHOVA, M
    BEHAL, V
    FOLIA MICROBIOLOGICA, 1994, 39 (04) : 287 - 290
  • [44] Biosynthesis of valerenic acid by engineered Saccharomyces cerevisiae
    Zhao, Mengya
    Zhang, Chuanbo
    Wang, Haibin
    He, Shifan
    Lu, Wenyu
    BIOTECHNOLOGY LETTERS, 2022, 44 (07) : 857 - 865
  • [45] BIOSYNTHESIS OF GLYCOPHOSPHOINOSITOL ANCHORS IN SACCHAROMYCES-CEREVISIAE
    CONZELMANN, A
    FANKHAUSER, C
    PUOTI, A
    DESPONDS, C
    CELL BIOLOGY INTERNATIONAL REPORTS, 1991, 15 (09) : 863 - 873
  • [46] Metabolic engineering of Saccharomyces cerevisiae for chelerythrine biosynthesis
    Zhu, Jiawei
    Zhang, Kai
    He, Yuanzhi
    Zhang, Qi
    Ran, Yanpeng
    Tan, Zaigao
    Cui, Li
    Feng, Yan
    MICROBIAL CELL FACTORIES, 2024, 23 (01)
  • [47] De novo biosynthesis of liquiritin in Saccharomyces cerevisiae
    Yan Yin
    Yanpeng Li
    Dan Jiang
    Xianan Zhang
    Wei Gao
    Chunsheng Liu
    Acta Pharmaceutica Sinica B, 2020, 10 (04) : 711 - 721
  • [48] Biosynthesis of glyoxylate from glycine in Saccharomyces cerevisiae
    Villas-Bôas, SG
    Åkesson, M
    Nielsen, J
    FEMS YEAST RESEARCH, 2005, 5 (08) : 703 - 709
  • [49] De Novo Biosynthesis of Dihydroquercetin in Saccharomyces cerevisiae
    Li, Hongbiao
    Zhang, Shuai
    Dong, Zilong
    Shan, Xiaoyu
    Zhou, Jingwen
    Zeng, Weizhu
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (35) : 19436 - 19446
  • [50] Biosynthesis and trafficking of sphingolipids in the yeast Saccharomyces cerevisiae
    Funato, K
    Vallée, B
    Riezman, H
    BIOCHEMISTRY, 2002, 41 (51) : 15105 - 15114