共 50 条
Bichromatic compatible matchings
被引:11
|作者:
Aloupis, Greg
[1
]
Barba, Luis
[1
,2
]
Langerman, Stefan
[1
]
Souvaine, Diane L.
[3
]
机构:
[1] Univ Libre Bruxelles, Dept Informat, Brussels, Belgium
[2] Carleton Univ, Sch Comp Sci, Ottawa, ON K1S 5B6, Canada
[3] Tufts Univ, Dept Comp Sci, Medford, MA 02155 USA
来源:
基金:
美国国家科学基金会;
关键词:
Perfect matchings;
Bichromatic point set;
Compatible matchings;
Transformation graph;
Reconfiguration problem;
SPANNING-TREES;
D O I:
10.1016/j.comgeo.2014.08.009
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
For a set R of n red points and a set B of n blue points, a BR-matching is a non-crossing geometric perfect matching where each segment has one endpoint in B and one in R. Two BR-matchings are compatible if their union is also non-crossing. We prove that, for any two distinct BR-matchings M and M', there exists a sequence of BR-matchings M = M-1,...,M-k = M' such that Mi-1 is compatible with M. This implies the connectivity of the compatible bichromatic matching graph containing one node for each BR-matching and an edge joining each pair of compatible BR-matchings, thereby answering the open problem posed by Aichholzer et al. in [1]. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:622 / 633
页数:12
相关论文