Bichromatic compatible matchings

被引:11
|
作者
Aloupis, Greg [1 ]
Barba, Luis [1 ,2 ]
Langerman, Stefan [1 ]
Souvaine, Diane L. [3 ]
机构
[1] Univ Libre Bruxelles, Dept Informat, Brussels, Belgium
[2] Carleton Univ, Sch Comp Sci, Ottawa, ON K1S 5B6, Canada
[3] Tufts Univ, Dept Comp Sci, Medford, MA 02155 USA
来源
基金
美国国家科学基金会;
关键词
Perfect matchings; Bichromatic point set; Compatible matchings; Transformation graph; Reconfiguration problem; SPANNING-TREES;
D O I
10.1016/j.comgeo.2014.08.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a set R of n red points and a set B of n blue points, a BR-matching is a non-crossing geometric perfect matching where each segment has one endpoint in B and one in R. Two BR-matchings are compatible if their union is also non-crossing. We prove that, for any two distinct BR-matchings M and M', there exists a sequence of BR-matchings M = M-1,...,M-k = M' such that Mi-1 is compatible with M. This implies the connectivity of the compatible bichromatic matching graph containing one node for each BR-matching and an edge joining each pair of compatible BR-matchings, thereby answering the open problem posed by Aichholzer et al. in [1]. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:622 / 633
页数:12
相关论文
共 50 条
  • [1] Bichromatic Compatible Matchings
    Aloupis, Greg
    Barba, Luis
    Langerman, Stefan
    Souvaine, Diane L.
    PROCEEDINGS OF THE TWENTY-NINETH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SOCG'13), 2013, : 267 - 275
  • [2] Random bichromatic matchings
    Bhatnagar, Nayantara
    Randall, Dana
    Vazirani, Vijay V.
    Vigoda, Eric
    ALGORITHMICA, 2008, 50 (04) : 418 - 445
  • [3] Random Bichromatic Matchings
    Nayantara Bhatnagar
    Dana Randall
    Vijay V. Vazirani
    Eric Vigoda
    Algorithmica, 2008, 50 : 418 - 445
  • [4] Random bichromatic matchings
    Bhatnagar, N
    Randall, D
    Vazirani, VV
    Vigoda, E
    LATIN 2006: THEORETICAL INFORMATICS, 2006, 3887 : 190 - 201
  • [5] Bichromatic Perfect Matchings with Crossings
    Aichholzer, Oswin
    Felsner, Stefan
    Paul, Rosna
    Scheucher, Manfred
    Vogtenhuber, Birgit
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2023, PT I, 2023, 14465 : 124 - 132
  • [6] On Compatible Matchings
    Aichholzer O.
    Arroyo A.
    Masárová Z.
    Parada I.
    Perz D.
    Pilz A.
    Tkadlec J.
    Vogtenhuber B.
    Journal of Graph Algorithms and Applications, 2022, 26 (02) : 225 - 240
  • [7] Linear transformation distance for bichromatic matchings
    Aichholzer, Oswin
    Barba, Luis
    Hackl, Thomas
    Pilz, Alexander
    Vogtenhuber, Birgit
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 68 : 77 - 88
  • [8] Compatible geometric matchings
    Aichholzer, Oswin
    Bereg, Sergey
    Dumitrescu, Adrian
    Garcia, Alfredo
    Huemer, Clemens
    Hurtado, Ferran
    Kano, Mikio
    Marquez, Alberto
    Rappaport, David
    Smorodinsky, Shakhar
    Souvaine, Diane
    Urrutia, Jorge
    Wood, David R.
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (6-7): : 617 - 626
  • [9] Disjoint Compatible Geometric Matchings
    Mashhood Ishaque
    Diane L. Souvaine
    Csaba D. Tóth
    Discrete & Computational Geometry, 2013, 49 : 89 - 131
  • [10] Disjoint Compatible Geometric Matchings
    Ishaque, Mashhood
    Souvaine, Diane L.
    Toth, Csaba D.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 49 (01) : 89 - 131