Optimal Kernel Selection for Density Estimation

被引:6
|
作者
Lerasle, Matthieu [1 ]
Magalhaes, Nelo Molter [2 ]
Reynaud-Bouret, Patricia [1 ]
机构
[1] Univ Cote Azur, CNRS, LJAD, UMR 7351, F-06100 Nice, France
[2] Univ Paris 11, INRIA, Dept Math Orsay, Select Project, F-91405 Orsay, France
关键词
Density estimation; Kernel estimators; Minimal penalty; Optimal penalty; Oracle inequalities; MOMENT INEQUALITIES; PENALTIES; UNIFORM;
D O I
10.1007/978-3-319-40519-3_19
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide new general kernel selection rules thanks to penalized least-squares criteria. We derive optimal oracle inequalities using adequate concentration tools. We also investigate the problem of minimal penalty as described in Birge and Massart (2007, Probab. Theory Relat. Fields, 138(1-2):33-73).
引用
收藏
页码:425 / 460
页数:36
相关论文
共 50 条
  • [31] An adaptive method for bandwidth selection in circular kernel density estimation
    Stanislav Zámečník
    Ivana Horová
    Stanislav Katina
    Kamila Hasilová
    Computational Statistics, 2024, 39 : 1709 - 1728
  • [32] Information bound for bandwidth selection in kernel estimation of density derivatives
    Wu, TJ
    Lin, Y
    STATISTICA SINICA, 2000, 10 (02) : 457 - 473
  • [33] Deviation in kernel density estimation: super-optimal case
    Berzin-Joseph, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (09): : 825 - 830
  • [34] Modified Fast Algorithm for the Bandwidth Selection of the Kernel Density Estimation
    A. V. Lapko
    V. A. Lapko
    Optoelectronics, Instrumentation and Data Processing, 2020, 56 : 566 - 572
  • [35] An adaptive method for bandwidth selection in circular kernel density estimation
    Zamecnik, Stanislav
    Horova, Ivana
    Katina, Stanislav
    Hasilova, Kamila
    COMPUTATIONAL STATISTICS, 2024, 39 (04) : 1709 - 1728
  • [36] Bayes bandwidth selection in kernel density estimation with censored data
    Kulasekera, K. B.
    Padgett, W. J.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2006, 18 (02) : 129 - 143
  • [37] Estimator Selection: a New Method with Applications to Kernel Density Estimation
    Lacour C.
    Massart P.
    Rivoirard V.
    Sankhya A, 2017, 79 (2): : 298 - 335
  • [38] A Bayesian approach to bandwidth selection for multivariate kernel density estimation
    Zhang, Xibin
    King, Maxwell L.
    Hyndman, Rob J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (11) : 3009 - 3031
  • [39] A bandwidth selection for kernel density estimation of functions of random variables
    Mugdadi, AR
    Ahmad, IA
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 47 (01) : 49 - 62
  • [40] Bandwidth selection for kernel density estimation with doubly truncated data
    Moreira, C.
    Van Keilegom, I.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 61 : 107 - 123