Towards Understanding ASR Error Correction for Medical Conversations

被引:0
|
作者
Mani, Anirudh [1 ]
Palaskar, Shruti [2 ]
Konam, Sandeep [1 ]
机构
[1] Abridge AI Inc, Pittsburgh, PA 15232 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain Adaptation for Automatic Speech Recognition (ASR) error correction via machine translation is a useful technique for improving out-of-domain outputs of pre-trained ASR systems to obtain optimal results for specific in-domain tasks. We use this technique on our dataset of Doctor-Patient conversations using two off-the-shelf ASR systems: Google ASR (commercial) and the ASPIRE model (open-source). We train a Sequence-to-Sequence Machine Translation model and evaluate it on seven specific UMLS Semantic types, including Pharmacological Substance, Sign or Symptom, and Diagnostic Procedure to name a few. Lastly, we breakdown, analyze and discuss the 7% overall improvement in word error rate in view of each Semantic type.
引用
收藏
页码:7 / 11
页数:5
相关论文
共 50 条
  • [1] Towards an ASR error robust Spoken Language Understanding System
    Ruan, Weitong
    Nechaev, Yaroslav
    Chen, Luoxin
    Su, Chengwei
    Kiss, Imre
    INTERSPEECH 2020, 2020, : 901 - 905
  • [2] Development of an ASR System for Medical Conversations
    Renato, Alejandro
    Luna, Daniel
    Benitez, Sonia
    MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 664 - 668
  • [3] Towards Multilingual Conversations in the Medical Domain: Development of Multilingual Medical Data and A Network-based ASR System
    Sakti, Sakriani
    Kubo, Keigo
    Matsumiya, Sho
    Neubig, Graham
    Toda, Tomoki
    Nakamura, Satoshi
    Adachi, Fumihiro
    Isotani, Ryosuke
    LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2014, : 2639 - 2643
  • [4] CI based error correction for ASR text
    Gong, Yuan
    Lei, Li
    Proceedings of 2006 International Conference on Artificial Intelligence: 50 YEARS' ACHIEVEMENTS, FUTURE DIRECTIONS AND SOCIAL IMPACTS, 2006, : 750 - 754
  • [5] Pronunciation guided copy and correction model for ASR error correction
    Dong, Ling
    Wang, Wenjun
    Yu, Zhengtao
    Huang, Yuxin
    Guo, Junjun
    Zhou, Guojiang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (10) : 4787 - 4799
  • [6] Boosting Chinese ASR Error Correction with Dynamic Error Scaling Mechanism
    Fan, Jiaxin
    Zhang, Yong
    Li, Hanzhang
    Wang, Jianzong
    Li, Zhitao
    Ouyang, Sheng
    Cheng, Ning
    Xiao, Jing
    INTERSPEECH 2023, 2023, : 2173 - 2177
  • [7] ASR Error Correction with Augmented Transformer for Entity Retrieval
    Wang, Haoyu
    Dong, Shuyan
    Liu, Yue
    Logan, James
    Agrawal, Ashish Kumar
    Liu, Yang
    INTERSPEECH 2020, 2020, : 1550 - 1554
  • [8] ASR error management for improving spoken language understanding
    Simonnet, Edwin
    Ghannay, Sahar
    Camelin, Nathalie
    Esteve, Yannick
    De Mori, Renato
    18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 3329 - 3333
  • [9] ASR Error Correction with Constrained Decoding on Operation Prediction
    Yang, Jingyuan
    Li, Rongjun
    Peng, Wei
    INTERSPEECH 2022, 2022, : 3874 - 3878
  • [10] Robust ASR Error Correction with Conservative Data Filtering
    Udagawa, Takuma
    Suzuki, Masayuki
    Muraoka, Masayasu
    Kurata, Gakuto
    EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Industry Track, 2024, : 256 - 266