Best linear estimation via minimization of relative mean squared error

被引:0
|
作者
Su, Lin [1 ]
Bondell, Howard D. [1 ]
机构
[1] NC State Univ, Raleigh, NC 27695 USA
关键词
Biased linear estimator; Smallest relative mean squared error; Ridge regression; Ordinary least squares; REGRESSION;
D O I
10.1007/s11222-017-9792-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose methods to construct a biased linear estimator for linear regression which optimizes the relative mean squared error (MSE). Although there have been proposed biased estimators which are shown to have smaller MSE than the ordinary least squares estimator, our construction is based on the minimization of relative MSE directly. The performance of the proposed methods is illustrated by a simulation study and a real data example. The results show that our methods can improve on MSE, particularly when there exists correlation among the predictors.
引用
收藏
页码:33 / 42
页数:10
相关论文
共 50 条
  • [1] Best linear estimation via minimization of relative mean squared error
    Lin Su
    Howard D. Bondell
    [J]. Statistics and Computing, 2019, 29 : 33 - 42
  • [2] Minimax estimation in the linear model with a relative squared error
    Wilczynski, M
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 127 (1-2) : 205 - 212
  • [3] On the integrated mean squared error of wavelet density estimation for linear processes
    Beknazaryan, Aleksandr
    Sang, Hailin
    Adamic, Peter
    [J]. STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2023, 26 (02) : 235 - 254
  • [4] On the integrated mean squared error of wavelet density estimation for linear processes
    Aleksandr Beknazaryan
    Hailin Sang
    Peter Adamic
    [J]. Statistical Inference for Stochastic Processes, 2023, 26 : 235 - 254
  • [5] Mean Squared Error Minimization for Inverse Moment Problems
    Didier Henrion
    Jean B. Lasserre
    Martin Mevissen
    [J]. Applied Mathematics & Optimization, 2014, 70 : 83 - 110
  • [6] Mean Squared Error Minimization for Inverse Moment Problems
    Henrion, Didier
    Lasserre, Jean B.
    Mevissen, Martin
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2014, 70 (01): : 83 - 110
  • [7] Minimum mean-squared error estimation in linear regression with an inequality constraint
    Wan, ATK
    Ohtani, K
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 86 (01) : 157 - 173
  • [8] MEAN SQUARED ERROR OF ESTIMATION OR PREDICTION UNDER A GENERAL LINEAR-MODEL
    HARVILLE, DA
    JESKE, DR
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (419) : 724 - 731
  • [9] Mean-squared error estimation for linear systems with block circulant uncertainty
    Beck, Amir
    Eldar, Yonina C.
    Ben-Tal, Aharon
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (03) : 712 - 730
  • [10] On the Performance of Joint Linear Minimum Mean Squared Error (LMMSE) Filtering and Parameter Estimation
    Bensaid, Siouar
    Slock, Dirk
    [J]. 2013 IEEE 14TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2013, : 420 - 424