On the integrated mean squared error of wavelet density estimation for linear processes

被引:0
|
作者
Aleksandr Beknazaryan
Hailin Sang
Peter Adamic
机构
[1] University of Tyumen,Institute of Environmental and Agricultural Biology (X
[2] University of Mississippi,BIO)
[3] Laurentian University,Department of Mathematics
关键词
Linear process; Wavelet method; Density estimation; Projection operator; Primary 62G07; Secondary 62G05, 62M10;
D O I
暂无
中图分类号
学科分类号
摘要
Let {Xn:n∈N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{X_n: n\in {{\mathbb {N}}}\}$$\end{document} be a linear process with density function f(x)∈L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)\in L^2({{\mathbb {R}}})$$\end{document}. We study wavelet density estimation of f(x). Under some regular conditions on the characteristic function of innovations, we achieve, based on the number of nonzero coefficients in the linear process, the minimax optimal convergence rate of the integrated mean squared error of density estimation. Considered wavelets have compact support and are twice continuously differentiable. The number of vanishing moments of mother wavelet is proportional to the number of nonzero coefficients in the linear process and to the rate of decay of characteristic function of innovations. Theoretical results are illustrated by simulation studies with innovations following Gaussian, Cauchy and chi-squared distributions.
引用
收藏
页码:235 / 254
页数:19
相关论文
共 50 条