Prediction of Gestational Diabetes Mellitus under Cascade and Ensemble Learning Algorithm

被引:1
|
作者
Zhang, Jie [1 ]
Wang, Fang [2 ]
机构
[1] Xianyang Cent Hosp, Dept Obstet, Xianyang 712000, Peoples R China
[2] Xianyang Hosp Yanan Univ, Dept Hematol Endocrinol, Xianyang 712000, Peoples R China
关键词
CLASSIFICATION; PREVENTION; DIAGNOSIS; DISEASE;
D O I
10.1155/2022/3212738
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gestational diabetes mellitus (GDM) is one of the risk factors for fetal dysplasia and maternal pregnancy difficulties. Therefore, the prediction of the risk of GDM in advance has become a big demand for millions of families. Therefore, machine learning technology is adopted to study GDM prediction. Firstly, the data is preprocessed, and the mean value is used for outlier processing. After preprocessing of the data, the IV value method is used to screen the features. Of the 83 features in the original sample data, 40 important features are screened out through feature engineering. On this basis, Logistics regression model, Lasso-Logistics, Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (Xgboost), Light Gradient Boosting Machine (Lightgbm), and Gradient Boosting Categorical Features (Catboost) are established, and multiple learners are integrated. Finally, the constructed model is tested on data sets. The accuracy of the proposed model is 80.3%, the accuracy is 74.6%, the recall rate is 79.3%, and the running time is only 2.53 seconds. This means that the proposed model is superior to the previous models in terms of accuracy, precision, recall rate, and F1 value, and the time consumption is also in line with the actual engineering requirements. The proposed scheme provides some ideas for the research of machine learning technology in disease prediction.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Machine Learning Prediction Models for Gestational Diabetes Mellitus: Meta-analysis
    Zhang, Zheqing
    Yang, Luqian
    Han, Wentao
    Wu, Yaoyu
    Zhang, Linhui
    Gao, Chun
    Jiang, Kui
    Liu, Yun
    Wu, Huiqun
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (03)
  • [12] Prediction of gestational diabetes mellitus in Asian women using machine learning algorithms
    Kang, Byung Soo
    Lee, Seon Ui
    Hong, Subeen
    Choi, Sae Kyung
    Shin, Jae Eun
    Wie, Jeong Ha
    Jo, Yun Sung
    Kim, Yeon Hee
    Kil, Kicheol
    Chung, Yoo Hyun
    Jung, Kyunghoon
    Hong, Hanul
    Park, In Yang
    Ko, Hyun Sun
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [13] Machine Learning Approach for Postprandial Blood Glucose Prediction in Gestational Diabetes Mellitus
    Pustozerov, Evgenii A.
    Tkachuk, Aleksandra S.
    Vasukova, Elena A.
    Anopova, Anna D.
    Kokina, Maria A.
    Gorelova, Inga V.
    Pervunina, Tatiana M.
    Grineva, Elena N.
    Popova, Polina V.
    [J]. IEEE ACCESS, 2020, 8 : 219308 - 219321
  • [14] Prediction of postpartum prediabetes by machine learning methods in women with gestational diabetes mellitus
    Parkhi, Durga
    Periyathambi, Nishanthi
    Ghebremichael-Weldeselassie, Yonas
    Patel, Vinod
    Sukumar, Nithya
    Siddharthan, Rahul
    Narlikar, Leelavati
    Saravanan, Ponnusamy
    [J]. ISCIENCE, 2023, 26 (10)
  • [15] Metabolomic profiling in the prediction of gestational diabetes mellitus
    Bentley-Lewis, Rhonda
    Huynh, Jennifer
    Xiong, Grace
    Lee, Hang
    Wenger, Julia
    Clish, Clary
    Nathan, David
    Thadhani, Ravi
    Gerszten, Robert
    [J]. DIABETOLOGIA, 2015, 58 (06) : 1329 - 1332
  • [16] Application of machine learning algorithm for predicting gestational diabetes mellitus in early pregnancy
    Li-Li Wei
    Yue-Shuai Pan
    Yan Zhang
    Kai Chen
    Hao-Yu Wang
    Jing-Yuan Wang
    [J]. Frontiers of Nursing, 2021, 8 (03) : 209 - 221
  • [17] Metabolomic profiling in the prediction of gestational diabetes mellitus
    Rhonda Bentley-Lewis
    Jennifer Huynh
    Grace Xiong
    Hang Lee
    Julia Wenger
    Clary Clish
    David Nathan
    Ravi Thadhani
    Robert Gerszten
    [J]. Diabetologia, 2015, 58 : 1329 - 1332
  • [18] Metabolomic Profiling in the Prediction of Gestational Diabetes Mellitus
    Huynh, Jennifer
    Lee, Hang
    Clish, Clary B.
    Nathan, David M.
    Thadhani, Ravi
    Gerszten, Robert E.
    Bentley-Lewis, Rhonda
    [J]. ENDOCRINE REVIEWS, 2014, 35 (03)
  • [19] New Gestational Diabetes Mellitus Risk Algorithm
    Mendizabal, Leire
    Arregi, Maddi
    Deogracia, Johanna Valerio
    Levi, Ana M. Ramos
    Barabash, Ana
    De la Torre, Nuria Garcia
    Arana, Eunate
    Urrutia, Ines
    Gaztambide, Sonia
    Castano, Luis
    Martinez, Maria De Los Angeles M.
    Camarillo-Romero, Eneida
    Zeron, Hugo Mendieta
    Garduno-Garcia, Jesus
    Corcoy, Rosa
    Simon, Laureano
    Zulueta, Mirella
    Calle, Alfonso L.
    [J]. DIABETES, 2022, 71
  • [20] Ensemble Classifier Technique to Predict Gestational Diabetes Mellitus (GDM)
    Sumathi, A.
    Meganathan, S.
    [J]. COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 40 (01): : 313 - 325