One-dimensional p-adic subanalytic sets

被引:38
|
作者
van den Dries, L
Haskell, D
Macpherson, D
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Coll Holy Cross, Dept Math, Worcester, MA 01610 USA
[3] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
D O I
10.1112/S0024610798006917
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [21] LIPSCHITZ CONTINUITY PROPERTIES FOR p-ADIC SEMI-ALGEBRAIC AND SUBANALYTIC FUNCTIONS
    Cluckers, Raf
    Comte, Georges
    Loeser, Francois
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (01) : 68 - 87
  • [22] Sets of range uniqueness in p-adic fields
    Boussaf, K.
    Boutabaa, A.
    Escassut, A.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2007, 50 : 263 - 276
  • [23] On the compactness of Julia sets of p-adic polynomial
    Bézivin, JP
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2004, 246 (1-2) : 273 - 289
  • [24] Definable sets, motives and p-adic integrals
    Denef, J
    Loeser, F
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) : 429 - 469
  • [25] Cell decomposition for semibounded p-adic sets
    Eva Leenknegt
    [J]. Archive for Mathematical Logic, 2013, 52 : 667 - 688
  • [26] p-adic quotient sets: diagonal forms
    Antony, Deepa
    Barman, Rupam
    Miska, Piotr
    [J]. ARCHIV DER MATHEMATIK, 2022, 119 (05) : 461 - 470
  • [27] p-adic quotient sets: cubic forms
    Deepa Antony
    Rupam Barman
    [J]. Archiv der Mathematik, 2022, 118 : 143 - 149
  • [28] MORE ON DEFINABLE SETS OF P-ADIC NUMBERS
    SCOWCROFT, P
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1988, 53 (03) : 912 - 920
  • [29] p-adic quotient sets: cubic forms
    Antony, Deepa
    Barman, Rupam
    [J]. ARCHIV DER MATHEMATIK, 2022, 118 (02) : 143 - 149
  • [30] Cell decomposition for semibounded p-adic sets
    Leenknegt, Eva
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 2013, 52 (5-6) : 667 - 688